Ikea73.ru

IKEA Стиль
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое прогрузка автоматических выключателей

Что такое прогрузка автоматических выключателей

При работе энергосистемы, зачастую необходимо включать или выключать различные цепи (например, линии электропередач, распределительные устройства, генераторные установки) как в нормальных, так и в аварийных условиях. Ранее эту функцию выполняли переключатели и предохранители, расположенные последовательно с цепью. Однако такое средство контроля имеет два недостатка. Во-первых, когда предохранитель перегорает, требуется довольно много времени, чтобы заменить его и восстановить подачу тока. Во-вторых, предохранитель не может качественно прерывать сильные токи замыкания, возникающие в результате неисправностей в современных цепях высокого напряжения.

С развитием энергосистемы, требуется использование более надежных средств защиты, таких как автоматические выключатели. Данный прибор может замыкать или размыкать цепь вручную или автоматически при любых условиях, в том числе во время короткого замыкания.

Автоматический выключатель

Принцип работы автоматического выключателя

Автоматический выключатель состоит из неподвижных и подвижных контактов, называемых электродами. При нормальных условиях работы, эти контакты остаются замкнутыми и не будут автоматически открываться до тех пор, пока система не выйдет из строя. Конечно, контакты могут быть открыты вручную или с помощью пульта дистанционного управления, когда это необходимо. При возникновении неисправности в какой-либо части системы, отключающие катушки выключателя срабатывают автоматически, а движущиеся контакты раздвигаются механизмом, тем самым размыкая цепь.

Когда контакты автоматического выключателя разъединяются в условиях неисправности, между ними возникает электрическая дуга. Таким образом, ток может проходит до тех пор, пока разряд не прекратится. Появление дуги не только задерживает процесс прерывания тока, но и генерирует огромное количество тепла, которое может привести к повреждению системы или самого выключателя. Поэтому основная задача автоматического выключателя состоит в том, чтобы погасить дугу в кратчайшие сроки, дабы выделяемое тепло не достигло опасного значения. Это основной принцип работы автоматического выключателя.

Автомат

Зачем нужен этот прибор

Автоматические выключатели выполняют три основные задачи:

  • они должны проводить ток максимально эффективно, когда отключены;
  • будучи включенными, они должны надежно изолировать контакты друг от друга;
  • в случае короткого замыкания, устройства должны отключать ток как можно быстрее и надежнее, тем самым защищая все последующее оборудование.

Почему важно проверять устройство

Автоматический выключатель может простаивать годами, но при возникновении короткого замыкания он должен тут же, в течение нескольких миллисекунд, защитить электрические цепи. Основными ошибками, возникающими в приборах, являются: неправильное соединение, короткие замыкания в катушках, повреждение/износ механических соединений или изоляционного материала. Поэтому автоматы должны регулярно и тщательно проверяться на исправность работы.

Автоматический выключатель

Автоматические выключатели выполняют жизненно важную роль в защите дорогостоящего оборудования от повреждений из-за неисправностей, то есть надежно подключают и отключают электроэнергию. Это требует подтверждения их надежности с помощью полевых испытаний во время монтажа и регулярных эксплуатационных испытаний в течение всего срока службы, чтобы предотвратить неполадки и проблемы, которые могут поставить под угрозу безопасность подстанции. Поэтому регулярное тестирование производительности является важной и экономически эффективной частью любой стратегии технического обслуживания.

Как определить, что автоматический выключатель неисправен

Автоматический выключатель может испортиться преждевременно, например, из-за летней жары. Если это произойдет, устройство перестанет сработать, даже если через эту цепь проходит слишком много электричества. Проще говоря, возникнет серьезная проблема, потому что она может в конечном итоге привести к пожару в доме. Стоит отметить, что в домашних условиях можно только визуально проверить устройство. Тесты и замену стоит предоставить профессионалам.

Причины выхода устройства из строя:

  1. Короткое замыкание. Обычно возникает, когда некоторые провода случайно соприкасаются.
  2. Перегрузка электрической цепи. Прибор пропускает больше тока, чем предусмотрено производителем.

Типичные признаки неисправного автомата:

  • запах гари в щитке, исходящий от электрического оборудования;
  • прибор горячий на ощупь;
  • видны сгоревшие детали, оборванные провода и явные признаки износа.

Короткое замыкание

Если при проверке автоматического выключателя наблюдается какой-либо из вышеперечисленных признаков, значит пришла пора вызывать электриков с просьбой замены устройства.

Этапы заводского тестирования автоматических выключателей

Типовые испытания организуются с целью проверки возможностей и обеспечения точной номинальной характеристики автоматического выключателя. Такие испытания проводятся в специально построенной испытательной лаборатории в соответствие с ПУЭ.

Механическое испытание — это испытание типа механической способности, включающее повторное отключение и включение устройства. Автоматический выключатель должен закрываться и открываться с надлежащей скоростью, и выполнять свою работу и функцию без каких-либо сбоев.

Механическое испытание

Тепловые испытания проводятся для проверки теплового поведения автоматов. Из-за протекания номинального тока через его полюс в номинальном состоянии, испытуемый выключатель подвергается установившемуся повышению температуры. Повышение температуры для номинального тока не должно превышать 40 °C.

Диэлектрические испытания. Эти тесты проводятся для проверки мощности частоты и импульсного напряжения выдерживаемой емкости. Испытания частоты мощности проводятся на новом устройстве. Испытательное напряжение изменяется с номинальным напряжением выключателя. При импульсных испытаниях на выключатель подается импульсное напряжение определенной величины. Для наружного контура проводятся сухие и влажные испытания.

Испытание на короткое замыкание. Электроустановка подвергается внезапным коротким замыканиям в испытательных лабораториях, и осциллограммы используются, чтобы знать поведение автоматических выключателей во время включения, во время разрыва контакта и после гашения дуги. Осциллограммы изучаются с особым учетом токов возбуждения и размыкания, как симметричных, так и несимметричных напряжений рестрикции, а распределительное устройство иногда испытывается в номинальных условиях.

Регламент испытания автоматического выключателя

Плановые испытания проводятся на основании и со стандартами ПУЭ. Эти тесты проводятся на территории завода-изготовителя. Обычные и плановые испытания подтверждают правильность функционирования автоматического выключателя. Некоторые руководящие принципы и рекомендации по этим испытаниям включают регулярное техническое обслуживание и проверку того, что производительность автоматического выключателя соответствует калибровочным кривым производства. Крайне важно, чтобы испытания автоматических выключателей проводились в стабильных условиях при подходящей температуре, чтобы не было никаких отклонений в данных.

Профилактическое обслуживание автомата защиты цепи, осмотр и испытание

Профилактическое обслуживание зависит от условий эксплуатации. Первичные проверки будут направлены на выявление твердых частиц, загрязняющих внутреннюю работу устройства. Накопление твердых частиц обычно можно утилизировать, щелкнув на выключателе «Выкл» и «Вкл», чтобы очистить накопившуюся пыль.

Профилактическое обслуживание

Испытание отключения автоматического выключателя

Анализируя ток, потребляемый катушкой отключения во время работы выключателя, можно определить, имеются ли механические или электрические проблемы. Во многих случаях такие проблемы могут быть локализованы, и с помощью них можно найти первопричину.

Испытание сопротивления изоляции

Для испытания сопротивления выключателя, проводники нагрузки и линии должны быть предварительно отключены. Если их не отсоединить, то тестовые значения будут также включать характеристики подключенной цепи. Испытание на сопротивление имеет решающее значение для проверки того, что изоляционный материал работает корректно. Для проверки сопротивления изоляции используется прибор, известный как мегаомметр. Прибор подает напряжение постоянного тока на провод в течение заданного периода времени, чтобы проверить сопротивление внутри изоляции на конкретном проводе или обмотке. Следует также отметить, что если включить напряжение, которое слишком высоко для того, чтобы эта изоляция выдержала, то потенциально можно повредить изоляцию.

Испытания соединения

Проверка соединения важна для того, чтобы убедиться в наличии соответствующего электрического соединения и распознать следы перегрева. Важно, чтобы электрические соединения были установлены по правилам — это предотвращает и уменьшает перегрев.

Читайте так же:
Выключатель кнопочный лифтовой стрелка шрифт брайля

Испытание контактного сопротивления

Нормальный износ контактов возникает после длительного использования. Простой способ определить следы ослабления внутри выключателя — это оценить сопротивление на каждом полюсе. Признаки аномальных отклонений внутри устройства, таких как эрозия и загрязнение контактов, очевидны, если на выключателе имеются чрезмерные падения милливольт. Проверка контактного сопротивления важна для определения того, пригоден ли прибор к работе.

Испытание контактного сопротивления

Испытание на срабатывание при перегрузке

Компоненты отключения от перегрузки можно проверить, введя 300 % номинальной мощности выключателя в каждый полюс автоматического выключателя, чтобы определить, будет ли он автоматически реагировать на срабатывание. Цель состоит в том, чтобы убедиться, что автоматический выключатель работает корректно.

Как проводится прогрузка автоматического выключателя

В современной электронике используются различные устройства для проверки автоматических выключателей. Также проверка проводится с помощью разных методов тестирования и типов тестеров. При выполнении прогрузки делается частичный демонтаж прибора, а по окончанию тестов — возврат выключателя на место.

Чтобы начать проверку, требуется глубокое знание самого устройства, а именно надо:

  • понимать, как оно работает;
  • ознакомиться с ПУЭ;
  • знать исходные значения предыдущих тестов;
  • иметь начальные значения, с которыми сравниваются фактические результаты;
  • иметь установленные настройки или начальные характеристики, заданные производителем.

Для тестов используются специальные устройства, например, анализатор, микроомметр, а для проверки автоматических выключателей напряжением до 1000 В — СИНУС-1600 или Сатурн-М.

Прогрузка с помощью анализатора автоматических выключателей

Испытание с помощью анализатора — это эффективный способ проверки выключателя. Тестер анализирует не только время срабатывания, но и существенную синхронность полюсов в различных операциях. Это показывает время открытия или закрытия каждого полюса в одиночных или комбинированных операциях, а также проверяет возможную разницу между полюсами или время рассогласования, которое может привести к опасному отсутствию синхронизации.

Испытание с помощью анализатора

Способ тестирования автоматического выключателя с помощью анализатора может выявить и дополнительные проблемы, что приводит к проверке других характеристик, таких как время сопротивления, время хода, время скорости, состояние катушек и механический анализ.

Прогрузка с помощью микроомметра

Автоматические выключатели обычно несут огромную величину тока. Большее контактное сопротивление вызывает большие потери и низкую пропускную способность тока, также высокую температуру. Так что тестирование сопротивления с помощью микроомметров является другим способом проверки прибора для выявления и предотвращения предстоящих проблем.

Прогрузка с помощью микроомметра

Синус-1600

Синус-1600 — достаточно функциональный прибор для испытаний, причем он безопасен и прост в эксплуатации. Его применение эффективно и рационально при предъявлении к форме испытательного тока повышенных требований относительно параметра нелинейных искажений.

Синус-1600

Сатурн-М

Сатурн-М применяется для прогрузки автоматических выключателей с тепловыми и электромагнитными расцепителями. Применяется также и в лабораторных условиях в целях контроля тока, протекающего по прибору.

1. Типовые схемы автоматического управления асинхронным двигателем с

2. Типовые схемы автоматического управления асинхронным двигателем с

Пункт 1 — Типовые схемы автоматического управления асинхронным

двигателем с короткозамкнутым ротором.

Управление асинхронными двигателями с короткозамкнутым ротором можно производить с помощью магнитных пускателей или контакторов. При применении двигателей малой мощности, не требующих ограничения пусковых токов, пуск осуществляется — включением их на полное напряжение сети. Простейшая схема управления двигателем представлена на рис. 1.

Рисунок 1 – Схема управления АД с короткозамкнутым ротором с нереверсивным

Для пуска схемы включается автоматический выключатель и тем самым подается напряжение на силовую цепь схемы и цепь управления. При нажатии кнопки SВ1 «Пуск» замыкается цепь питания катушки контактора КМ, вследствие чего его главные контакты в силовой цепи также замыкаются, присоединяя ста­тор электродвигателя М к питающей сети. Одновременно в цепи управления замыкается блокировочный контакт КМ, что создает цепь питания катушки КМ (независимо от положения контакта кнопки). Отключение электродвигателя осуществляется нажати­ем кнопки SВ2 «Стоп». При этом разрывается цепь питания кон­тактора КМ, что приводит к размыканию всех его контактов, двигатель отключается от сети, после чего необходимо отклю­чить автоматический выключатель QF.

В данной схеме предусмотрены следующие виды защит:

— от коротких замыканий — с помощью автоматического вы­ключателя QF и предохранителей FU;

— от перегрузок электродвигателя — с помощью тепловых реле КК (размыкающие контакты этих реле при перегрузках раз­мыкают цепь питания контактора КМ, тем самым отключая дви­гатель от сети);

— нулевая защита — с помощью контактора КМ (при сниже­нии или исчезновении напряжения контактор КМ теряет пита­ние, размыкая свои контакты, и двигатель отключается от сети).

Для включения двигателя необходимо вновь нажать кнопку SВ 1 «Пуск». Если прямой пуск двигателя невозможен и необхо­димо ограничить пусковой ток асинхронного короткозамкнутого двигателя, применяют пуск на пониженное напряжение. Для этого в цепь статора включают активное сопротивление или ре­актор либо применяют пуск через автотрансформатор.

На рис. 2 приведена схема управления асинхронным двига­телем с короткозамкнутым ротором с симметричными сопротивле­ниями в цепи статора. Включается автоматический выключатель QF, подается напряжение на силовую цепь и цепь управления. После нажатия на кнопку SВ 1 срабатывает контактор КМ 1, си­ловые контакты которого замыкаются и подключают двигатель к сети с активными сопротивлениями в цепи статора. Одновре­менно получает питание реле времени КТ, поскольку контакт КМ 1 в цепи реле КТ замыкается.

Рисунок 2 – Схема управления АД с короткозамкнутым ротором с симметричными

сопротивлениями в цепи статора

По истечении времени, равного выдержке времени реле КТ, замыкается контакт КТ, вследствие чего контактор КМ 2 сраба­тывает и своими контактами шунтирует сопротивления в цепи статора. Пуск заканчивается. Для остановки двигателя нажима­ется кнопка SВ 2 «Стоп» и отключается автоматический выклю­чатель QF.

На рис. 3 приведена схема управления асинхронным двига­телем с короткозамкнутым ротором с реверсивным магнитным пускателем. Схема позволяет осуществлять прямой пуск асин­хронного короткозамкнутого двигателя, а также изменять направ­ление вращения двигателя, т.е. производить реверс.

Пуск двигате­ля осуществляется включением автоматического выключателя QF и нажатием кнопки SВ 1, вследствие чего контактор КМ 1 получает питание, замыкает свои силовые контакты и статор двигателя подключается к сети. Для реверса двигателя необходимо нажать кнопку SВ 3. Это приведет к отключению контактора КМ 1, после чего нажимается кнопка SВ2 и включается контактор КМ 2.

Рисунок 3 – Схема управления АД с короткозамкнутым ротором с реверсивным

Таким образом, двигатель подключается к сети с изменением порядка чередования фаз, что приводит к изменению направле­ния его вращения. В схеме применена блокировка от возможно­го ошибочного одновременного включения контакторов КМ 2 и КМ 1 с помощью размыкающих контактов КМ 2, КМ 1. Отклю­чение двигателя от сети осуществляется кнопкой SВ 2 и автома­тическим выключателем QF. В схеме предусмотрены все виды зашит электродвигателя, рассмотренные в схеме управления асин­хронным двигателем с нереверсивным магнитным пускателем.

Пункт 2 — Типовые схемы автоматического управления асинхронным

двигателем с фазным ротором.

Пуск двигателя с фазным ротором осуществляется с введен­ными резисторами в цепи ротора. Резисторы в цепи ротора слу­жат для ограничения токов не только в процессе пуска, но и при реверсе, торможении, а также при снижении скорости.

По мере разгона двигателя для поддержания ускорения при­вода резисторы выводятся. Когда пуск закончится, резисторы полностью шунтируются, и двигатель перейдет работать на есте­ственную механическую характеристику. На рис. 4 приведена схема асинхронного двигателя с фаз­ным ротором, где с помощью релейно-контакторной аппаратуры осуществляется пуск двигателя в две ступени, причем напряже­ние подается одновременно на силовые цепи и цепи управления с помощью выключателя QF.

Читайте так же:
Как отличить проходной выключатель от перекрестного

Рисунок 4 – Схема пуска АД с фазным ротором

Управление двигателем в рассматриваемой схеме осуществляется в функции времени. При подаче напряжения в цепь управления реле времени КТ 1, КТ 2 срабатывают и размыкают свои контакты. Далее нажимает­ся кнопка SВ 1. Это приводит к срабатыванию контактора КМ 3

и пуску двигателя с резисторами, введенными в цепи ротора, так как контакторы КМ 1 и КМ2 питания не получают. При включе­нии контактора КМ 3 реле КТ 1 теряет питание и замыкает свой контакт в цепи контактора КМ 1 через промежуток времени, рав­ный выдержке времени реле КТ 1. По истечении указанного вре­мени включается контактор КМ 1, шунтирующий первую пуско­вую ступень резисторов. Одновременно размыкающий контакт КМ 1 в цепи реле КТ 2 размыкается, реле КТ 2 теряет питание и с выдержкой времени замыкает свой контакт в цепи контакто­ра КМ 2, который срабатывает через промежуток, равный вы­держке времени реле КТ 2, и шунтирует вторую ступень резисто­ров в цепи ротора.

Схема управления асинхронным двигателем с фазным рото­ром в функции тока представлена на рис. 5. Для контроля пус­ка по току применяют токовые реле, которые срабатывают при пусковом токе и отпадают при минимальном токе переключе­ния.

Схема предусматривает пуск двигателя и его защиту без ре­версирования и торможения. Пуск двигателя осуществляется при включении в цепь автоматического выключателя QF и кон­тактора КМ 3, причем в цепь ротора полностью введены пуско­вые резисторы. Блокировочные контакты контактора КМ 3 шун­тируют кнопку SB 1 и создают цепь питания блокировочного реле KL. Замыкающий контакт реле KL подает питание на кон­такторы ускорения КМ 1, КМ 2. Собственное время срабатыва­ния реле тока КА 1 и КА 2 меньше, чем соответствующих контак­торов КМ 1 и КМ 2, поэтому реле тока срабатывает раньше, чем соответствующий контактор ускорения, и пуск двигателя осуще­ствляется с резисторами, введенными в цепь ротора.

Рисунок 4 – Схема пуска АД с фазным ротором в функции тока

При пусковом токе реле тока КА 1 срабатывает и размыкает свой контакт в цепи контактора КМ 1. По мере разгона двигателя ток ротора уменьшается. При токе переключения реле КА 1 отпа­дает и контакт КА 1 в цепи контактора КМ 1 замыкается, что при­водит к срабатыванию контактора КМ 1, который своими кон­тактами шунтирует первую ступень пускового резистора и реле КА 1. Одновременно замыкается блокировочный контакт КМ 1, что ставит катушку контактора КМ 1 на «самоподхват» при размы­кании контакта КА 1. При шунтировании первой пусковой сту­пени резистора ток возрастает до максимального значения, что приводит к срабатыванию реле КА 2, препятствуя включению контактора КМ 2. По мере разгона двигателя ток снова уменьша­ется до минимального значения, реле КА 2 отпадает, размыкаю­щий контакт КА 2 замыкается, создавая цепь питания катушки КМ 2. При этом шунтируется вторая ступень пускового резисто­ра. Остановить двигатель можно нажатием кнопки SВ2 «Стоп», в результате чего обесточивается контактор КМ 3 и двигатель от­ключается от сети.

Автоматизация — Управление выключателем по датчику движения в Home Assistant

Одной из самых распространенных автоматизаций является управление освещением по датчику движения, очень удобно войти в помещение и включение света происходит автоматически, через какое-то время свет отключается сам. Рассмотрим примеры ее реализации.

Пример 1

  • Датчик движения — ID устройства: 0x001
  • Управляемый выключатель физически замыкающий/размыкающий электрическую линию — ID устройства: 0x002
  • Включение освещение по датчику движения
  • Отключение освещения через 3 минуты после окончания обнаружения движения датчиком
  • Отключение освещения через 3 минуты после включения выключателя (на случай если свет был включен с выключателя, но в помещении не было обнаружено движение)

Правим файл automations.yaml или пользуемся редактором автоматизаций Configuration -> Automations -> + .

Действие 1. При переходе сенсора движения в состояние on проверяется текущее состояние выключателя, если выключатель находится в состоянии off , то освещение включается.

Действие 2. При переходе сенсора движения в состояние off через 3 минуты проверяется текущее состояние выключателя, если выключатель находится в состоянии on , то освещение выключается.

Действие 3. При включении освещения через 3 минуты проверяется состояние датчика на присутствие движения, если оно не обнаружено, то освещение выключается. Иначе, свет должен отключиться, когда сенсор движения перейдет в состояние off — действие 2.

Пример 2

Автоматическое включение и отключение освещения — это отлично, но бывают ситуации, когда это не нужно и надо иметь возможность выбора отключения данной функции. Можно отключить автоматизации в настройках, но будет удобнее создать переключатель, который будет отвечать за автоматическое включение и отключение освещения.

Создаем выключатель автоматики тип Toggle с наименованием auto_light_on_off в меню Configuration -> Helpers -> + или в файл configuration.yaml добавляем следующую запись:

Кнопку удобно вывести на панель lovelace для быстрого доступа.

automation auto light on off

  • Выключатель автоматического включения/отключения освещения — ID: input_boolean.auto_light_on_off
  • Датчик движения — ID устройства: 0x001
  • Управляемый выключатель физически замыкающий/размыкающий электрическую линию — ID устройства: 0x002
  • Включение освещения по датчику движения
  • Отключение освещения через 3 минуты после окончания обнаружения движения датчиком
  • Отключение освещения через 3 минуты после включения выключателя (на случай если свет был включен с выключателя, но в помещении не было обнаружено движение)
  • Отключение освещения через 3 минуты после включения выключателя автоматики

Действие 1. При переходе сенсора движения в состояние on проверяется текущее состояние выключателя автоматики и выключателя освещения, если первый находится в состоянии on , а второй выключатель находится в состоянии off то освещение включается.

Действие 2. При переходе сенсора движения в состояние off через 3 минуты проверяется текущее состояние выключателя автоматики и выключателя освещения, если первый находится в состоянии on и второй выключатель находится в состоянии on , то освещение выключается.

Действие 3. При включении освещения через 3 минуты проверяется состояние выключателя автоматики и датчика на присутствие движения, если автоматика включена и движение не обнаружено, то освещение отключается. Иначе, свет должен отключиться, когда сенсор движения перейдет в состояние off — действие 2.

Действие 4. При включении автоматического включения освещения через 3 минуты проверяется текущее состояние выключателя автоматики (может быть выключено в период ожидания), датчика движения и выключателя освещения. Если автоматика on , движение off и свет включен, то освещение отключается.

Пример 3

В примере 2 есть недостаток в действии 4, при окончании обнаружения движения до окончания таймера отключение освещения произойдет раньше, чем ожидается, т.к. состояния устройств будут соответствовать условиям. Решить проблему перекрестных таймеров можно создав свой таймер, по которому будет происходить отключение освещения. В файле configuration.yaml описываем таймер, время отключения 180 секунд:

  • Выключатель автоматического включения/отключения освещения — ID: input_boolean.auto_light_on_off
  • Таймер автоматического отключения освещения — ID: timer.light_turn_off
  • Датчик движения — ID устройства: 0x001
  • Управляемый выключатель физически замыкающий/размыкающий электрическую линию — ID устройства: 0x002
  • Включение автоматического освещения
  • Выключение автоматического освещения
  • Включение освещения с выключателя
  • Выключение освещения с выключателя
  • Включение освещения по датчику движения
  • Отмена таймера при обнаружении движения
  • Датчик движения прекратил обнаружение действия
  • Таймер завершил отсчет
Читайте так же:
Макел выключатели только оптом

Действие 1. При включении выключателя автоматики происходит перезапуск таймера отключения освещения, если датчик движения в состоянии off и освещение включено.

Действие 2. При отключении выключателя автоматики если был запущен таймер отключения, то он отменяется.

Действие 3. При включении освещения с выключателя происходит перезапуск таймера отключения, если выключатель автоматики on и датчик движения off .

Действие 4. При отключении освещения с выключателя если был запущен таймер отключения, то он отменяется.

Действие 5. При обнаружении движения включается освещение, если выключатель автоматики on и освещение на данный момент выключено.

Действие 6. При обнаружении движения происходит отмена таймера отключения при его активном текущем состоянии.

Действие 7. При окончании обнаружения движения датчиком, включенном выключателе автоматики и включенном свете происходит запуск таймера на отключения освещения.

Действие 8. При окончании отсчета таймера происходит отключение освещения, если выключатель автоматики on , датчик движения off и освещение включено.

Пакеты

Для удобства управления наборы вспомогательных компонентов и автоматизаций, объединенных общим сценарием можно записать в отдельный файл с расширением yaml . Для подключения данных из этого файла его необходимо положить в папку .homeassistant/packages/ и в configuration.yaml прописать:

Для примера выше создадим файл .homeassistant/packages/room_auto_light.yaml с сценарием управления света в помещении с содержанием:

После перезагрузки Home Assistant дополнительные компоненты и автоматизации будут доступны в системе.

Почему срабатывают автоматические выключатели

Основные неисправности автоматических выключателей, их причины возникновения и способы устранения. Что делать, если автомат не включается или выбивает.

Если в квартире погас свет, отключились розетки, или перестала работать электроплита, то любой мало-мальски знакомый с электротехникой человек идет на площадку проверять в электрощите состояние автоматических выключателей. Чаще всего, устранение неисправности сводится к повторному включению автомата.

Факт срабатывания современного модульного автоматического выключателя определяется легко: ручка находится в положении «вниз», на ней отчетливо виден круглый знак – «ноль». Для включения достаточно повернуть эту ручку вверх, тогда появится горизонтальная черта, и можно будет считать, что миссия выполнена.

Многие квартиры на постсоветском пространстве оборудованы щитками с автоматами немного другого образца. Автоматические выключатели серии АЕ и им подобные имеют немного большие габариты, крепятся к основанию длинными винтами и обладают неприятным свойством: при срабатывании их ручка остается в прежнем, верхнем положении. Это затрудняет поиск сработавшего автомата, который необходимо выключить и снова включить, чтобы вновь подать напряжение.

Но все это, по большому счету, мелочи. Сработавший автомат говорит о какой-то неисправности, а нам надо разобраться, о какой именно.

Расцепители автоматических выключателей

Для начала надо выяснить хотя бы в общих чертах, что такое автоматический выключатель, и как он работает. Многим известно, что автомат разрывает «фазу». Многополюсный автомат может разрывать и нулевой рабочий проводник. Но разрывать цепь автомат может не только по желанию владельца, поворачивающего ручку вниз. На то это и «автоматический» выключатель, что выключиться он может и автоматически.

Необходимо это для того, чтобы защитить проводники и квартирное электрооборудование от повышенного электрического тока, способного вызвать пожар и разрушения. Причиной же возрастания тока может стать:

1. Перегрузка сети. Ее может вызвать включение неисправных электроприемников, или электроприемников, суммарная мощность которых превышает возможности сети. Последнее может быть связано и с неправильной электрической разводкой по квартире, когда на одну группу приходится большое количество штепсельных розеток. Каждая розетка в отдельности вполне может быть и не перегружена, но суммарный их ток может достигать недопустимых для одного автомата значений.

Для защиты от токов перегрузки в автоматических выключателях применяется тепловой расцепитель – биметаллический контакт, состояние которого зависит от температуры, которая, в свою очередь, зависит от протекающего электрического тока. Уставку, то есть, ток срабатывания теплового расцепителя обычно можно регулировать в небольших пределах.

2. Короткое замыкание в сети. Оно может быть вызвано неисправностью электропроводки или выходом из строя какого-либо электроприемника. Для новой электропроводки короткое замыкание может стать результатом ошибки в монтаже, например, при соединении проводов в ответвительной коробке. Физически короткое замыкание – это электрическое соединение фазного и нулевого проводника помимо нагрузки. Поскольку сопротивление цепи в этом случае ограничивается только сопротивлением проводов, то электрический ток мгновенно достигает очень большого значения.

Для защиты от сверхтоков короткого замыкания тепловой расцепитель автомата неэффективен: пока нагреется и разорвется биметаллический контакт, провода уже практически наверняка будут повреждены, а электрическая дуга вызовет возгорание. Поэтому в модульных автоматических выключателях всегда применяетсяэлектромагнитный расцепитель, скорость срабатывания которого составляет доли секунды с момента возрастания тока.

Итак, если в вашем квартирном щитке сработал автоматический выключатель, то можно, конечно, включить его вновь. Однако систематическое срабатывание говорит о какой-то проблеме, которую придется решать.

Короткое замыкание в цепи розеток

При мгновенном срабатывании автомата после его включения есть все основания полагать, что мы имеем дело с коротким замыканием – тепловой расцепитель так быстро не сработает. Убедиться в наличии замыкания можно при помощи мультиметра – сопротивление между нулевой рабочей шиной N и выводом автоматического выключателя при коротком замыкании должно быть близко к нулю. Разумеется, проводить подобные измерения можно, только при выключенном автомате.

Коль скоро мы убедились, что причина срабатывания – короткое замыкание, то необходимо выяснить, где именно оно произошло. Автоматические выключатели в щитке должны быть подобраны в соответствии с принципами селективности, а это значит, что сработать должен именно автомат, расположенный ближе всего к месту короткого замыкания. При этом выключатель реагирует только на замыкания в той части цепи, которая расположена после него относительно линии.

Поэтому, скажем, если срабатывает только вводной автоматический выключатель, то место замыкания с большой долей вероятности расположено прямо во вводном щите. При замыкании в пределах квартиры срабатывает групповой выключатель и зачастую вместе с ним – вводной автомат. В этом случае вводной аппарат можно смело включить вновь и выяснить, какая именно группа электроприемников подключена к проблемному проводу – эта группа не будет работать.

Выяснив этот вопрос, можно отключить все эти электроприемники и вновь ввести групповой автомат в работу. Если он не сработал, то причина состоит в неисправности одного из отключенных электроприборов. Найти конкретного виновника можно либо поочередным включением всех электроприемников, либо измерением их входного сопротивления. Второй способ не подходит для приборов, имеющих электронное управление. Неисправный прибор, разумеется, подлежит ремонту.

Если все приборы исправны, необходимо приступить к осмотру розеток, входящих в состав группы: пластиковые корпуса разобрать, проверить и подтянуть клеммные зажимы. После розеток наступает черед коробок. Их придется вскрыть. И если осмотр не выявит явных неисправностей, то провода надо разъединить, чтобы проверить сопротивление между жилами кабелей по отдельности. Такая проверка уже точно позволит определить, в каком именно из кабелей имеется замыкание. Поврежденная линия подлежит замене, а жилы в коробке необходимо вновь соединить с применением сертифицированных зажимов.

Короткое замыкание в цепи освещения

Если срабатывающий автоматический выключатель защищает цепи освещения, то проверку можно начать с введения автомата при выключенных выключателях. Не сработал автомат – можно поочередно щелкать выключателями для того, чтобы выяснить, в цепи какого именно из них имеется короткое замыкание. Таким образом сужаем область поиска до цепи группы светильников, вводимых с одного выключателя.

Читайте так же:
Выключатель автоматический ва57ф35 125а 341110

В этой группе следует тщательно осмотреть каждый светильник, выкрутив лампы и рассмотрев клеммные зажимы. Мультиметром можно измерить сопротивление между фазным и нулевым проводом со стороны каждого светильника. При этом можно определить светильник или кабельную линию, в которой произошло замыкание.

Если же короткое замыкание выявляется на всех светильниках группы, или присутствует в сети вне зависимости от положения выключателя, то местом замыкания, скорее всего, является ответвительная коробка освещения. Ее необходимо вскрыть и проверить точно так же, как в случае с замыканием розеточной сети. Ну, а если и в коробке полный порядок, то прозваниваем отдельные кабельные линии, разъединив их концы.

Перезагрузка

Перегрузка сети — Как уже говорилось, в случае перегрузки сети по току автоматическому выключателю требуется некоторое время для срабатывания. Обычно речь идет о нескольких минутах. Поэтому если автомат вышибает время от времени, то очень может быть, что вы имеете дело именно с перегрузкой.

Перегрузка цепи освещения — явление достаточно редкое, и чтобы его избежать, используйте только лампы, подходящие по мощности к вашим светильникам, а модернизацию цепи освещения производите с учетом резерва по мощности. Ведь цепи освещения отдельных квартир часто бывают защищены одним автоматом на десять ампер. Этого часто бывает и достаточно, но при установке большого количества дополнительных светильников в щитке необходимо предусмотреть дополнительный автомат освещения для их питания, особенно, если светильники галогеновые или с обычными лампами накаливания.

Перегрузка розеточной сети — это совсем не редкость. Во время проектирования и монтажа электропроводки в доме невозможно точно определить нагрузку на каждую группу. Поэтому для удобства жильцов на группу, включаемую одним автоматическим выключателем, приходится по три-четыре розетки. И, несмотря на то, что номинал автоматического выключателя обычно подбирается по сечению питающей жилы и не превышает 25 ампер, номинальный ток розеток может составлять 16 ампер.

Здесь есть все предпосылки для перегрузки, если все мощные электроприемники, такие как чайник, утюг, микроволновая печь и тому подобное, включить в розетки одной группы. Тут уж, разумеется, сработает автоматический выключатель. И чтобы подобного не происходило, необходимо равномерно распределять мощную нагрузку между группами, а при отсутствии такой возможности – не включать в сеть одновременно несколько мощных электроприемников.

Случается, что неисправный электроприбор потребляет повышенный ток, который приводит к перегрузке сети и срабатыванию автоматического выключателя. Замерить ток в бытовых условиях не всегда возможно, но если срабатывание теплового расцепителя происходит только при включении какого-то одного электроприемника, а номинальная мощность этого прибора не превышает 2,5 кВт, то следует произвести его ревизию на предмет наличия неисправностей.

Неисправность автоматического выключателя — не так уж и редко причиной постоянного срабатывания автоматических выключателей является неисправность последних. Даже среди новых автоматов допускается некоторое количество бракованных экземпляров. Их неспособность держать уставку (а касается это, в основном, тепловых расцепителей) часто выявляется только в ходе эксплуатации.

Поэтому при систематическом срабатывании теплового расцепителя автомата, прежде чем приступать к радикальным методам решения проблемы, можно просто произвести пробную замену автомата на схожий по номиналу и характеристике.

В заключение

В статье мы умышленно обошли стороной моменты, когда срабатывание автомата вызвано повреждением линии в ходе ремонтных работ – это тема отдельного разговора. По той же причине мы не стали касаться ситуации, когда срабатывает дифференциальный автоматический выключатель.

Но напоследок хотелось бы напомнить, что самый популярный способ решения проблемы срабатывающего автомата – замена его на автомат большего номинала – не допустим категорически. Автоматические выключатели – это аппараты, обеспечивающие защиту от пожара и повреждений. Их номинал подбирается именно с целью обеспечения безопасности. Произвольно выбранный автомат не выполнит своих функций и не защитит от опасных режимов работы электрической сети.

Автоматический выключатель

Автоматический выключатель — контактный коммутационный аппарат, способный включать токи, проводить их и отключать при нормальных условиях в цепи, а также включать, проводить в течение нормированного времени и отключать токи при нормированных ненормальных условиях в цепи, таких как короткое замыкание .

История изобретения

Автомат защиты линии был изобретён американским учёным Чарлзом Графтоном Пэйджем в 1836 году. Первую конструкцию автоматического выключателя описал Эдисон в 1879 году, в то время как его коммерческая система электроснабжения использовала плавкие предохранители. Конструкция современных автоматических выключателей была запатентована швейцарской компанией Brown, Boveri & Cie в 1924 году.

Роль в электрической цепи

Автоматический выключатель предназначен для защиты электрической цепи от сверхтока. Главным отличием от плавкой вставки является возможность многократного использования.

Классификация

Классификация по ГОСТ

ГОСТ 9098-78 устанавливает следующую классификацию автоматических выключателей:

  • По роду тока главной цепи: постоянного тока; переменного тока; постоянного и переменного тока. Номинальные токи главных цепей выключателей, предназначенных для работы при температуре окружающего воздуха 40 °C, должны соответствовать ГОСТ 6827. Номинальные токи для главных цепей выключателя выбирают из ряда: 6,3; 10; 16; 20; 25; 32; 40; 63; 100; 160; 250; 400; 630; 1 000; 1 600; 2 500; 2000; 4 000; 6 300 А. Дополнительно могут выпускаться выключатели на номинальные токи главных цепей выключателей: 1 500; 3 000; 3 200 А. Номинальные токи максимальных расцепителей тока выключателей, предназначенных для работы при температуре окружающего воздуха 40 °C, должны соответствовать ГОСТ 6827. Допускаются номинальные токи максимальных расцепителей тока: 15; 45; 120; 150; 300; 320; 600; 1 200; 1 500; 2000; 3 000; 3 200 А
  • По конструкции: воздушный автоматический выключатель (англ. Air Circuit Breaker, сокращенно АСВ) от 800 А до 6 300 А, выключатель в литом корпусе (с англ. — «МССВ») от 10 А до 2500 А, модульные автоматические выключатели (с англ. — «МСВ») от 0,5 А до 125 А.
  • По числу полюсов главной цепи: однополюсные; двухполюсные; трёхполюсные; четырёхполюсные.
  • Поналичию токоограничения: токоограничивающие; нетокоограничивающие.
  • По видам расцепителей: с максимальным расцепителем тока; с независимым расцепителем; с минимальным или нулевым расцепителем напряжения.
  • По характеристике выдержки времени максимальных расцепителей тока: без выдержки времени; с выдержкой времени, независимой от тока; с выдержкой времени, обратно зависимой от тока; с сочетанием указанных характеристик.
  • По наличию свободных контактов («блок-контактов») для вторичных цепей: с контактами; без контактов.
  • По способу присоединения внешних проводников: с задним присоединением; с передним присоединением; с комбинированным присоединением (верхние зажимы с задним присоединением, а нижние — с передним присоединением или наоборот); с универсальным присоединением (передним и задним).
  • По виду установки: выкатные с втычными контактами; стационарные.
  • По виду исполнения отсечки: селективные, неселективные.
  • По виду привода: с ручным; с двигательным; с пружинным.
  • По наличию и степени защиты выключателя от воздействия окружающей среды и от соприкосновения с находящимися под напряжением частями выключателя и его движущимися частями, расположенными внутри оболочки (в соответствии с требованиями ГОСТ 14255).

Селективный автоматический выключатель

В стандартах СССР и России селективные автоматические выключатели — это автоматические выключатели с выдержкой времени (0,25—0,6 с) при отсечке (см. статью «Токовая отсечка»). Такие выключатели, в сочетании с выключателями с мгновенной отсечкой на нижней ступени, позволяют строить селективное срабатывание при к. з.

Читайте так же:
Выключатель двухклавишный ip44 10a

Селективные автоматические выключатели (англ. Selective Main Circuit Breaker) в соответствии с немецким стандартом DIN VDE 0641-21 также имеют функцию селективности, но осуществляют её другим способом.

Устройство

Автоматические выключатели бывают одно-, двух-, трёх- или четырёхполюсными и имеют следующие конструктивные узлы: главную контактную систему, дугогасительную систему, привод расцепляющего устройства, расцепитель (расцепители), вспомогательные контакты (необязательно).

Контактная система может быть трёхступенчатой (с главными, промежуточными и дугогасительными контактами), двухступенчатой (с главными и дугогасительными контактами) и одноступенчатой (при использовании металлокерамики).

Дугогасительная система может состоять из камер с узкими щелями или из камер с дугогасительными решётками. Комбинированные дугогасительные устройства — щелевые камеры в сочетании с дугогасительной решеткой — применяют для гашения дуги при больших токах.

Для каждого исполнения автоматического выключателя существует предельный ток короткого замыкания, который гарантированно не приводит к выходу из строя автомата. Превышение этого тока может вызвать подгорание или сваривание контактов. Например, у популярных серий бытовых автоматов при токе срабатывания 6-50 А предельный ток обычно составляет 1 000—10 000 А.

Автоматические выключатели изготовляют с ручным и двигательным приводом, в стационарном или выдвижном исполнении.

Привод автоматического выключателя служит для включения, автоматического отключения и может быть ручным непосредственного действия и дистанционным (электромагнитным, пневматическим и т. п.).

Автоматические выключатели имеют реле прямого действия, называемые расцепителями.

Расцепители

Расцепители — это электромагнитные, электронные, микропроцессорные или термобиметаллические элементы, служащие для отключения автоматического выключателя через механизм свободного расцепления при КЗ, перегрузках и исчезновении напряжения в первичной цепи (непосредственно: электромагнитные и термобиметаллические элементы; либо косвенно через отдельный независимый электромагнитный расцепитель: электронные и микропроцессорные).

Механизм свободного расцепления состоит из рычагов, защелок, коромысел и отключающих пружин и предназначен для мгновенного отключения автоматического выключателя (вне зависимости от положения органа включения: невозможность удержания автоматического выключателя во включённом положении при срабатывании расцепителя), а также для устранения повторного включения автоматического выключателя на короткое замыкание при длительно существующей команде на включение.

  • Электромагнитный расцепитель (отсечка) — расцепитель мгновенного действия, представляет собой соленоид, подвижный сердечник которого также может приводить в действие механизм расцепления. Ток, проходящий через выключатель, течет по обмотке соленоида и вызывает втягивание сердечника при превышении заданного порога тока. Мгновенный расцепитель, в отличие от теплового, срабатывает очень быстро (доли секунды), но при значительно большем превышении тока: в 2÷10 раз от номинала, в зависимости от типа (автоматические выключатели делятся на типы (классы) A, B, C и D в зависимости от чувствительности мгновенного расцепителя). В автоматических выключателях на большие токи начиная с 1970-х годов стали применять электронные расцепители (например отечественные автоматические выключатели серии «Электрон», некоторые типы автоматов серий А-37, ВА), а в последнее время и микропроцессорные расцепители (микропроцессорные блоки защиты).
  • Тепловой расцепитель представляет собой биметаллическую пластину, нагреваемую протекающим током. При протекании тока выше допустимого значения биметаллическая пластина изгибается и приводит в действие механизм расцепления. Время срабатывания зависит от тока (время-токовая характеристика) и может изменяться от секунд до часа. Минимальный ток, при котором должен срабатывать тепловой расцепитель, составляет 1,45 от тока уставки теплового расцепителя. Настройка тока срабатывания производится в процессе изготовления регулировочным винтом. В отличие от плавкого предохранителя, автоматический выключатель готов к следующему использованию после остывания пластины.

Биметаллическая пластина представляет собой ленту из двух металлических полос с разными коэффициентами теплового расширения. В автоматическом выключателе она выполняет роль теплового расцепителя. Две полосы не сплавлены между собой и обычно скреплены с одного конца пайкой или сваркой. Другие концы закреплены неподвижно. Биметаллическая пластина включена в цепь последовательно с нагрузкой. В результате её нагревания электрическим током пластина изгибается в сторону металла с меньшим коэффициентом линейного расширения. В случае перегрузки изгиб пластины обеспечивает отключение автоматического выключателя.

Отключение

Отключение может происходить без выдержки времени или с выдержкой. По собственному времени отключения tс, о (промежуток от момента, когда контролируемый параметр превзошёл установленное для него значение, до момента начала расхождения контактов) различают нормальные выключатели (tс, о = 0,02-1 с), выключатели с выдержкой времени (селективные) и быстродействующие выключатели (tс, о < 0,005 с).

Нормальные и селективные автоматические выключатели токоограничивающим действием не обладают. Быстродействующие выключатели, так же как предохранители, обладают токоограничивающим действием, так как отключают цепь до того, как ток в ней достигнет значения Іу.

Селективные автоматические выключатели позволяют осуществить селективную защиту сетей путём установки автоматических выключателей с разными выдержками времени: наименьшей у потребителя и ступенчато возрастающей к источнику питания.

Характеристики

Ток мгновенного расцепления

Диаграмма отключения модульных автоматических выключателей разных производителей (закрашена область токов мгновенного расцепления)

Согласно ГОСТ Р 50345-2010 (п.5.3.5), бытовые автоматические выключатели переменного тока делятся на следующие типы (классы) по току мгновенного расцепления:

  • тип B: свыше 3·In до 5·In включительно (где In — номинальный ток) (применяется для защиты линий освещения или линий имеющих большую протяженность)
  • тип C: свыше 5·In до 10·In включительно (применяется для защиты розеточных групп или линий с потребителями с умеренными пусковыми токами)
  • тип D: свыше 10·In до 20·In включительно (применяетс для защиты трансформаторов или линий с потребителями с большими пусковыми токами)

Промышленные автоматические выключатели могут быть следующих типов:

  • тип L: свыше 8·In
  • тип Z: свыше 4·In
  • тип K: свыше 12·In

У европейских производителей классификация может несколько отличаться. В частности, имеется дополнительный тип A (свыше 2·In до 3·In).

У АВВ имеются автоматические выключатели с кривыми K (8 — 14·In) и Z (2 — 4·In), соответствующие стандарту МЭК 60947-2.

Испытание автоматических выключателей

Характеристики выключателей проверяют в ходе типовых испытаний (стойкость маркировки; надежность винтов, токопроводящих частей и соединений; надежность выводов для внешних проводников; защита от электрических ударов; электроизоляционные устройства; превышение температуры (28-суточное испытание); характеристика расцепления; механическая и коммутационная износостойкость; короткое замыкание; стойкость против механических толчков и ударов; термостойкость; стойкость против аномального нагрева и огня; коррозиеустойчивость).

Варианты исполнения

Модульный автоматический выключатель

Автоматический выключатель, рассчитанный на небольшие токи, в настоящее время, чаще всего имеет модульную конструкцию, которая предназначена для крепления на DIN-рейку. Внутреннее устройство модульного автоматического выключателя показано на рисунке справа. Включение-выключение производится рычажком, провода подсоединяются к винтовым клеммам. Защелка фиксирует корпус выключателя на DIN-рейке и позволяет при необходимости легко его снять (для этого нужно оттянуть защелку, вставив плоскую отвёртку в петлю защелки). Коммутацию цепи осуществляют подвижный и неподвижный контакты. Подвижный контакт подпружинен, пружина обеспечивает усилие нажатия контактов во включённом состоянии и быстрое их отключение при срыве собачки механизма расцепления посредством одного из двух расцепителей: теплового или электромагнитного. Во время расцепления контактов может возникнуть электрическая дуга, поэтому контакты имеют особую форму и находятся рядом с дугогасительной решёткой.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector