Ikea73.ru

IKEA Стиль
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Автоматический выключатель

Автоматический выключатель

Цепи электропроводки в промышленных и бытовых помещениях обязательно включают в свой состав не один автоматический выключатель. Этот элемент обеспечивает безопасную эксплуатацию не только электросетей, но и зданий, сооружений в целом.

Автомат

Устройство защитного отключения — автоматический выключатель

Необходимость

В случае короткого замыкания или превышения допустимых токовых нагрузок он автоматически размыкает цепь. Отключение нагрузки предотвращает возгорание изоляции кабелей и распространение пожара, выхода из строя дорогостоящего оборудования, травмирования людей.

Существует много типов автоматических выключателей, они отличаются по мощности тепловых и токовых нагрузок, по габаритам, конструктивному исполнению и другим признакам. На бытовом уровне большинство используемых типов автоматических выключателей имеют общие принципы срабатывания и одинаковый набор составных элементов.

Даже формы корпусов, отверстия и отдельные элементы крепления приведены к общему стандарту. Любой тип низковольтного автоматического выключателя, который используется в административных зданиях, квартирах, частных домах, легко устанавливается на стандартные элементы крепления распределительных щитов. Рассмотрим часто применяемый в быту тип модульного автоматического выключателя марки ДЕК серия ВА.

Серия АВ

Панель выключателя АВ

Конструктивные особенности

Автоматический выключатель типа ВА построен на модульной основе, это позволяет использовать его в однофазной и трехфазной, одно- и многополюсной сетях. Для защиты однофазной сети нужен однополюсный автоматический выключатель: один модуль, чего вполне достаточно.

Электроустановки, работающие от трехфазной сети, защищаются трехполюсными автоматами защиты от трех модулей, по одному на каждую фазу. В этом случае автоматические выключатели собираются в единый блок.

Для синхронного срабатывания всей группы автоматов при превышении допустимого порога тока на одной из фаз рычаги управления фиксируются общей планкой. Для синхронного срабатывания рычаги управления также могут фиксироваться общей пластиковой планкой.

Стандартные отверстия дают возможность установить на автоматический выключатель дополнительные устройства промышленного типа: отдельные расцепители, сигнальные контакты и другие. Устанавливаемые элементы часто используются на производственных объектах для дистанционного контроля за срабатыванием и управлением работой электроустановок.

Пластиковые корпуса типовых модулей неразборные, они имеют стандартизированные размеры. Сверху и снизу расположены клеммы для проводов с винтовым устройством зажима.

В верхней части корпуса 2 отверстия:

  1. для отвода скопившихся газов от нагрева;
  2. для доступа к винту регулировки порога срабатывания, биметаллического элемента тепловой защиты.

Автомат

Корпус автомата: вид сверху

С тыльной стороны корпуса предусмотрены пазы и зажимные элементы, позволяющие одевать и фиксировать автоматический выключатель на стандартную DIN-рейку в распределительных щитах. Такая конструкция позволяет передвигать переключатели вдоль рейки, не отключая от цепи, разделять группы, она удобна при сборке, монтажных и ремонтных работах.

Автомат

Автоматический выключатель на ДИН-рейке

Как работает автомат

На примере одного модуля типа АВ рассмотрим, как работает автоматический выключатель и отдельные его элементы. Автоматическое управление срабатыванием на выключение осуществляется двумя параметрами: силой тока, проходящего через контакты выключателя, и температурой нагрева.

Для контроля значений этих параметров автоматический выключатель имеет два элемента:

  • обмотка электромагнитной катушки со стальным сердечником рассчитана на определенную силу тока;
  • биметаллические пластины откалиброваны, загибаются пропорционально величине проходящего через них тока, при превышении номинального значения оказывают механическое воздействие на расцепитель, который осуществляет контроль температурного режима.

Устройство автомата

Устройство автомата в разрезе

Подключается автоматический выключатель в разрыв цепи последовательно. На верхнюю клемму зажимается провод от источника питания, внизу крепятся провода, идущие к нагрузке.

Автоматический выключатель имеет два типа детектора и элемента расцепления, которые постоянно контролируют силу тока.

У каждого устройства свое назначение:

  • Электромагнитный расцепитель мгновенно реагирует на кратковременное значительное превышение тока номинального значения при коротком замыкании;
  • Регулируется тепловая защита, она более точная и инерционная в измерении значений тока, имеет большее время срабатывания. Это позволяет не реагировать на кратковременные незначительные превышения допустимых токовых значений. Все эти меры обеспечивают стабильную безопасную работу электроустановок.

Схема

Схема строения автоматического выключателя

Устройство расцепления и взвода

Это механическое устройство состоит из металлических пружин и пластиковых рычагов. Его задача в обычном режиме удерживать замкнутые контакты, в аварийных ситуациях, при превышении тока или температуры заданных предельных значений, разомкнуть контакты выключателя, для чего применяется автоматический или ручной режим отключения.

Читайте так же:
Как работает автоматический выключатель с токоограничением

Электромагнитный расцепитель

Это электромагнитная катушка со свободно двигающимся металлическим сердечником. Шток сердечника при рассчитанной величине предельно допустимого тока толкает рычаги расцепляющего устройства, оно срабатывает, контакты размыкаются.

Сечение провода на катушке электромагнита и количество витков рассчитываются на многократное срабатывание. Обмотка катушки выталкивает сердечник при значительном превышении номинального тока выключателя, в случае короткого замыкания в цепи.

Расцепитель

Один конец катушки подключен к подвижному контакту механизма расцепления, второй – к биметаллической пластине. Соединения выполнены гибким многожильным проводом, контакты сварные, это обеспечивает надежное соединение в условиях высоких температур. Припой на паяных контактах при нагреве может расплавиться.

При превышении номинального тока в катушке электромагнита в несколько раз сердечник выталкивается. Он давит сверху на рычаг спускового механизма, происходит расцепление, подвижный контакт под действием пружины отскакивает от неподвижного контакта, они размыкаются. Усилие размыкания дублируется штоком сердечника, закрепленного на подвижном контакте.

Одновременно с давлением на спусковой рычаг сердечник оттягивает подвижный контакт.

Тепловой расцепитель

Здесь используется принцип работы теплового реле. Такой способ широко применяется для аварийных отключений электрооборудования и сигнализации в электрических цепях. В основе технологии заложены свойства биметаллической пластины. Еще в XIX веке Джоуль-Ленц отметил пропорциональность температуры на участке цепи квадрату силы тока и сопротивлению.

Используя эту зависимость и свойства биметаллов, пластины стали применять для механического замыкания и размыкания контактов. Биметаллические пластины пропорционально изменяют свою форму в зависимости от силы тока и температуры. По степени изгиба пластины можно судить о величине тока и температуре.

Пластины

Биметаллические пластины: структура

У всех металлов коэффициенты теплового расширения отличаются: при нагреве пластин одного размера из разного металла до одинаковой температуры длина одной из них станет больше. Благодаря этому свойству, если скрепить эти две пластины вместе при нагреве, они начнут загибаться, при остывании – выпрямляться.

В нашем случае биметаллическая пластина находится в теплостойком изоляционном материале, обычно для этих целей одевается трубка из стекловолокна. Сверху изоляции намотан провод с высоким сопротивлением, это делается для косвенного нагрева пластины.

При прямом нагреве срок службы пластины существенно уменьшается. С увеличением тока температура пластины повышается, она загибается вверх, нажимая на спусковой рычаг механизма расцепления. В результате автоматический выключатель срабатывает, контакты размыкаются.

Искрогасительная камера

Значительную часть в корпусе модуля защиты занимает искрогаситель. В большинстве случаев автоматический выключатель срабатывает под током большой нагрузки. При прохождении тока большой силы в момент разрыва цепи между контактами возникает дуга электрического разряда.

Она имеет высокие температуры, может расплавить контакты и другие элементы автоматики. Для того чтобы этого избежать, ставят дугогаситель; его конструкция напоминает решетку из металлических пластин. В камере с пластинами дуга разрушается и гаснет, продукты горения и газы отходят через специальное отверстие.

Выбор

В частных домах можно установить четырехполюсный и трехполюсный автоматический выключатель для трехфазной сети 380 В. Чаще используются трехполюсные, двухполюсные и однополюсные для однофазной сети 220 В.

Выбирая элементы защиты, в первую очередь надо исходить из номинальных значений напряжения. Оно должно быть выше или соответствовать напряжению сети.

Одно из главных условий выбора и последующей настройки автомата защиты – отключение группы потребителя раньше, чем это сделают элементы защиты, установленные в цепи ближе к источнику подачи электроэнергии. Для этого учитываются следующие параметры.

Максимальная сила тока короткого замыкания на участке цепи, где устанавливается автоматический выключатель. Модульные модели защитных автоматов выдерживают 3000А; 4500А; 6000А; 10000А, немодульные рассчитаны на большие токи короткого замыкания. Для жилых домов и квартир достаточно 4500 или 6000А.

Номинальная сила тока расцепителя выбирается немного больше допустимого тока длительной нагрузки цепи. В противном случае автоматический выключатель будет срабатывать от незначительных скачков напряжения в процессе нормального режима работы.

Нужно обязательно учитывать Iн – теплового расцепителя.

Автоматический выключатель серии АВ с номинальным током 10А будет срабатывать при токе 10х1,45(поправка на тепловой расцепитель) = 14,5 А.

Параметры расцепления имеют три класса (В;С;D), они отличаются по токовременным характеристикам срабатывания:

  • Класс В – срабатывает расцепитель при превышении номинальной силы указанной на маркировке тока в 3-5 раз. Ставят в группах освещения и розеток, обычно они реагируют на пусковые токи при включении электродвигателей.
  • Класс С – расцепитель срабатывает при превышении номинальных токов в 5-10 раз, ставится в розеточные и осветительные группы, обеспечивает защиту двигателей водяных насосов с небольшими пусковыми токами. Хорошо использовать в загородных домах и квартирах.
  • Класс D – автоматический выключатель этого класса устанавливается на производственных объектах для защиты электродвигателей с большими пусковыми токами.
Читайте так же:
Кнопка выключатель legrand схема подключения

Обязательно учитывайте толщину и сечение проводов в цепи, где устанавливается автоматический выключатель. Они должны соответствовать номинальным значениям токовой нагрузки элементов защиты. Например, при номинальном токе автомата защиты в 16А сечение кабеля должно быть не менее 2,5 кв./мм. Iн – 10А соответствует толщине кабеля 1,5 кв./мм.

Для этого есть специальные таблицы определения площади сечения кабеля по току, ПУЭ (Правила устройства электроустановок) табл. 1.3.4, 1.3.5, 1.3.6, 1.3.7, 1.3.8.

Устройство автомата. Видео

Видео продемонстрирует устройство автоматического выключателя, что поможет с его монтажом и установкой.

Зная назначение и принципы работы, требования по установке и эксплуатации автоматических выключателей, легче сделать правильный выбор, что обеспечит стабильную, безаварийную работу бытовой техники в доме и квартире.

Особенности конструкции модульных автоматических выключателей, определяющие отключающую способность (2010)

«Вы достаточно подробно рассказывали о предельной отключающей способности аппаратов защиты от сверхтоков на напряжение до 1000 В; были показаны способы измерения этой величины и какими требованиями они регламентированы. Хотелось бы узнать, какими конструктивными особенностями модульных аппаратов определяется величина предельной отключающей способности, а также какие процессы происходят при протекании сверхтоков?»

Руслан ТРЯПКИН, Казань

Давайте для начала вспомним, что определяет термин «предельная отключающая способность». ГОСТ Р 50345-99 (МЭК 60898-95) гласит:

3.5.5 Наибольшая включающая и отключающая способность: переменная составляющая ожидаемого тока, выраженная его действующим значением, которую выключатель может включать, проводить в течение времени отключения и отключать при указанных условиях.

3.5.5.1 Предельная наибольшая отключающая способность: отключающая способность, для которой предписанные условия соответственно указанному циклу испытаний не предусматривают способности выключателя проводить в течение условного времени ток, равный 0,85 его тока нерасцепления.

3.5.5.2 Рабочая наибольшая отключающая способность: отключающая способность, для которой предписанные условия соответственно указанному циклу испытаний предусматривают способность выключателя проводить в течение условного времени ток, равный 0,85 тока нерасцепления.

Т.е. отключающая способность (далее по тексту — ПКС) определяет способность защитного аппарата произвести отключение линии питающей сети от нагрузки при возникновении в ней вследствие какой-либо аварии тока, превышающего допустимый расчетный ток.

Рассмотрим величину предельной отключающей способности на примере модульных аппаратов ТМ IEK с ПКС 4,5 и 6 кА.

Для автоматических выключателей ТМ IEK предельная и рабочая наибольшая отключающая способности считаются одинаковыми и применительно к аппаратам серии ВА47-ХХ рассматриваются только как номинальная отключающая способность, обозначаемая как Inc.

Что происходит при протекании сверхтока, в частности при испытаниях? В процессе испытаний формируется импульс тока, амплитудное значение которого соответствует действующему значению тока 1ампл ПКС (рис. 1).

На графике толстая линия обозначает реально протекающий через автоматический выключатель испытательный ток; тонкая

— калиброванный импульс тока через перемычку при калибровке.

Постепенно нарастая, величина протекающего через автоматический выключатель тока достигает значения срабатывания электромагнитной защиты. Начинается перемещение сердечника сброса; начался процесс расцепления контактов, возникновения дуги, стекания ее в дугогасительную камеру, разбиения ее на мелкие очаги и гашение.

В процессе нарастания величина тока становится достаточной для втягивания сердечника электромагнитного расцепите-ля. Сбрасывается блокировка пружины расцепления. Контактная группа начинает размыкаться. В процессе размыкания между контактами зажигается дуга. Окончанием процесса отключения считается полное прекращение протекания тока.

На рис. 1 это 1расц. С момента возникновения импульса до момента окончания протекания тока проходит время 1:расц, и по сути это то время, которое определяет скорость отключения аппарата, а в итоге — надежность автоматического выключателя в процессе отключения при сверхтоке. Чем быстрее произойдет размыкание контактов и закончатся процессы горения дуги, тем быстрее прекратится протекание электрического тока в защищаемой цепи и меньше будет разрушена поверхность контактов. Соответственно возрастет продолжительность работы автоматического выключателя.

Читайте так же:
Автоматический выключатель abb 1250a

Делаем вывод, что ПКС — это, по сути, характеристика автоматического выключателя, определяющая скорость прекращения протекания тока в процессе расцепления контактов, и стойкость конструкции автомата к процессам горения дуги в зоне размыкания.

Конструктивные особенности, влияющие на увеличение ПКС при размыкании контактов автоматического выключателя

Для начала рассмотрим требования к конструкции автоматического выключателя, а именно к собственно контактам контактной пары.

Во-первых, это материал контактной пары в зоне соприкосновения. Материалы должны быть подобраны так, чтобы переходное сопротивление контактной пары было минимальным.

Во-вторых, конструкция должна препятствовать «залипанию» (привариванию) контактов в замкнутом состоянии при протекании сверхтоков. Основной причиной такого неприятного процесса является взаимная диффузия (проникновение) частиц металла. Особенно ярко этот эффект проявляется для металлов, близких по составу, не имеющих защиты от «приваривания». Материалы контактной пары должны быть подобраны так, чтобы минимизировать этот эффект.

В-третьих, материалы контактной пары должны обладать минимальной способностью к эмиссии заряженных частиц в процессе размыкания. Это способствует подавлению процесса поддержания электрической дуги.

Рассмотрим другие элементы конструкции, влияющие на надежность конструкции и скорость расцепления.

Одним из важнейших конструктивных элементов — узлом, производящим собственно размыкание, является механизм свободного расцепления. Это система пружин и рычагов, производящая размыкание контактов на максимальное расстояние. Также очень важным является усилие прижатия контактов при включении аппарата, а также расцепления при его отклю чении.

Считая, что при разработке конструкции были учтены требования к материалам контактов, определять условия гашения дуги будет время размыкания контактов на максимальное расстояние, определяемое данным вариантом конструкции. Так, если размыкание произойдет на 3,5 мм за 1 мс, то условия для поддержания дуги будут более благоприятны по сравнению с механизмом, раствор контактов которого составит 5,5 мм за 1,5 мс. Основным фактором, влияющим на поддержание дуги, является приложенное к разрядному промежутку напряжение, и чем ниже напряжение на единицу расстояния между ближайшими точками контактов, тем быстрее произойдет гашение дуги. А время определит продолжительность благоприятных условий горения. И если размыкание будет происходить достаточно медленно, разрушение контактов будет значительным, вплоть до полного разрушения.

Также для ускорения гашения дуги в электротехнических аппаратах используют так называемый механизм «транспортировки» дуги. В автоматических выключателях это имеющая определенную форму стальная пластина с защитным покрытием, механически соединенная с одним из контактов для упрощения затягивания зоны горения дуги в так называемую дугогасительную камеру. Это производится посредством так называемого «магнитного дутья». При протекании тока в дуге формируется магнитное поле определенной формы, которое направляет область горения дуги от контактов вдоль пластин «транспортера» в дугогасительную камеру. В более современных моделях функцию «транспортера» дуги выполняет также особым образом изогнутый подвижный контакт, а в отдельных случаях — и дополнительные металлические пластины, подключенные к другому контакту.

Дугогасительная камера состоит из нескольких стальных, параллельно расположенных пластин сложного профиля, закрепленных в термостойких диэлектрических боковых пластинах. В модульных аппаратах обычно это специальный вид электротехнического картона, имеющего особую пропитку, усиливающую подавление процессов горения дуги. Из такого же материала выполнена задняя стенка дугогасительной камеры, необходимая для ограничения прохождения дуги сквозь дугогасительную камеру.

Рассмотрим конструкцию двух автоматических выключателей из ассортимента ТМ IEK, имеющих разное значение ПКС. Это автоматические выключатели ВА47-29 (ПКС 4500 А) и ВА47-60 (ПКС 6000 А) (рис. 2). Оба выключателя настроены на номинальный ток 16 А и имеют характеристику электромагнитного расцепителя «С».

На рис. 2 бросается в глаза различная компоновка аппаратов. В конструкции ВА47-29 подвижный контакт расположен «слева», со стороны дугогасительной камеры. У ВА47-60 — подвижный контакт «справа», с противоположной стороны от дугогасительной камеры, которые сильно отличаются размерами, что говорит о различных свойствах дугогашения. Известно, что чем больше пластин при равном расстоянии между ними, тем более эффективно электрическая дуга будет рассекаться.

У ВА47-29 девять пластин, а у ВА47-60 их тринадцать (рис. 3)!

Механизм свободного расцепления у ВА47-60 конструктивно проще и легче, зацепление более «мягкое», рабочая пружина размыкания — одна и достаточно мощная. Все это говорит о том, что размыкание контактов по сравнению с ВА47-29 произойдет быстрее. О большой износостойкости контактной пары при процессах горения говорит контактная напайка неподвижного контакта, в обоих случаях (ВА47-29 и ВА47-60) выполненная из серебросодержащего композита, а также специальная форма контактной зоны подвижного контакта. Этому же способствует то, что у ВА47-60 подвижный контакт замыкается дугоотводящей пластиной, тогда как у ВА47-29 не замыкается.

Читайте так же:
Врс 10 выключатель характеристики

Помимо описанных различий и сходства есть еще одно немаловажное отличие: дугоотводящая пластина подвижного контакта ВА47-60 выполнена в виде гладкой кривой (что значительно облегчает затягивание дуги в дугогасительную камеру), в то время как у ВА47-29 это ломаная линия с зоной критического состояния в зоне перелома. Также необходимо отметить, что у ВА47-60 есть дугоотводящая пластина двойной толщины в зоне неподвижного контакта (у ВА47-29 дугоотводящая пластина есть только в зоне неподвижного контакта). Двойная толщина необходима для увеличения ресурса при горении дуги. Еще одна особенность: подвижный контакт ВА47-60 при размыкании касается дугоотводящей пластины, что резко повышает эффективность дугогасительной камеры.

Все вышеперечисленное говорит о том, что ВА47-60 действительно имеет большее значение ПКС по сравнению с ВА47-29. Этот факт подтверждают и результаты проведенных испытаний в испытательном центре НИИ «Электроаппарат», г. Ставрополь. Специалисты НИИ документально подтвердили: конструкция ВА47-60 действительно соответствует значению ПКС 6000А. Причем с запасом.

Рубильник в щитке вместо автомата. Каковы преимущества и почему это нужно знать?

Рубильник в щитке вместо автомата. Каковы преимущества и почему это нужно знать?

Роль общего выключателя в электрощите дома или квартиры может играть как автомат, так и рубильник. Но рекомендуется устанавливать именно рубильник в щитке вместо автомата, а почему – будет рассмотрено далее.

Сравнение рубильников и автоматических выключателей.

Для начала стоит разобраться в том, что представляют собой оба эти устройства. Рубильник отличается от автоматического выключателя лишь тем, что не имеет функции автоматического отключения. То есть, отключать рубильник придется вручную. С первого взгляда кажется, что это недостаток, а не преимущество, но не стоит спешить с выводами. Необходимо знать, что между автоматами в электрощите нет селективности – то есть срабатывания всех ступеней защиты по очереди. При наличии селективности по току с вводным автоматом, а тот с автоматом, расположенным в этажном щитке, в случае возникновения короткого замыкания был бы отключен лишь групповой автомат, соединенный с этой линией.

Но практика показывает, что чаще всего происходит отключение общего автомата, а не отдельного, а это крайне неудобно. Дело в том, что из-за этого пропадает электроэнергия по всей квартире. При наличии рубильника сработало бы только там, где это нужно.

Что касается автомата, расположенного внутри этажного щита, то здесь стоит помнить о проводе, соединяющем электрощит в доме и далекий автомат. Благодаря сопротивлению и индуктивности возникнет некая задержка при прохождении тока. Это позволит первому сработать групповому автомату, что очень удобно.

Кроме всего этого, рубильник считается более надежным, чем автоматический выключатель. Он износостойкий и выдерживает многократные ежедневные отключения и включения. Прослужит такое электротехническое устройство даже при условии интенсивной эксплуатации значительно дольше, чем автомат. Причина такой надежности рубильника кроется в простоте его конструкции: в нем практически нет ничего, кроме контактов. При этом он достаточно мощный.

Отличие рубильника от автомата

В отличие от рубильников автоматы характеризуются более сложной конструктивной схемой исполнения, при этом у них и ответственности больше: они защищают электрическую цепь от сверхтока КЗ и перегрузки. Недостатков автоматического выключателя является ограниченный срок службы, так как он предназначен на определенное количество циклов включения-выключения.

Таким образом, при необходимости регулярном отключении электросети использовать автомат не рекомендуется – лучше установить рубильник. Кроме этого, рубильники стоят значительно дешевле автоматических выключателей.

Рекомендация : эксперты советуют использовать сразу 2 устройства на вводе в систему. Но для чего может понадобиться объединение рубильника с автоматическим выключателем?
Использование двух устройств

Для максимального удобства управления электрической сетью необходимо использовать и рубильник, и автомат. Конечно, если вы не планируете частые отключения питания, то можно обойтись простым автоматическим выключателем. Но электросеть многоквартирных домов, а также промышленных зданий характеризуется повышенными требованиями электробезопасности и эксплуатации. На самое ответственное место обычно устанавливают рубильник, который будет играть роль коммутационного устройства, с помощью которого можно будет вручную обесточить всю линию. Не рекомендуется использовать рубильники с защитными крышками, так как разрыв цепи должен быть видимым. Это необходимо для того, чтобы перед началом проведения электротехнических работ специалист мог визуально убедиться в разрыве контактов цепи. При этом в случае использования автомата с закрытым корпусом увидеть разрыв цепи будет невозможно.

Читайте так же:
Выключатель schneider ic60n 50а a9f79350

Также применение рубильника необходимо в цехах производственных предприятий, где в конце рабочего дня необходимо обесточить все оборудование или отключить сразу всю систему освещения. Но использовать рубильник необходимо в паре с автоматом, чтобы сеть была надежно защищена от аварийных ситуаций по типу сверхтоков, возникающих при коротких замыканиях.

Автоматические выключатели

Автоматические выключатели – это устройства, которые предназначаются для защитного отключения цепей постоянного и переменного тока в случаях короткого замыкания, токовой перегрузки, снижения напряжения или его исчезновения. В отличии от плавких предохранителей автоматические выключатели имеют более точный ток отключения, могут многократно использоваться, а также при трехфазном исполнении при срабатывании предохранителя какая – то из фаз (одна либо две) могут остаться под напряжением, что является тоже аварийным режимом работы (особенно при питании трехфазных электродвигателей).

Автоматические выключатели классифицируют по выполняемым функциям, таким как:

  • Автоматы минимального и максимального тока;
  • Автоматы минимального напряжения;
  • Обратной мощности;

Принцип действия автоматического выключателя

Мы рассмотрим принцип действия автоматического выключателя на примере автомата максимального тока. Его схема показана ниже:

Принцип действия автоматического выключателя

Где: 1 – электромагнит, 2 – якорь, 3, 7 – пружины, 4 – ось, по которой движется якорь, 5 – защелка, 6 – рычаг, 8 – силовой контакт.

При протекании номинального тока система работает нормально. Как только ток превысит допустимое значение уставки, последовательно включенный в цепь электромагнит 1, преодолеет усилие сдерживающей пружины 3 и втянет якорь 2, и провернувшись через ось 4 защелка 5 освободит рычаг 6. Тогда отключающая пружина 7 разомкнет силовые контакты 8. Такой автомат включается вручную.

В настоящее время созданы автоматы, которые имеют время отключения от 0,02 – 0,007 с на токи отключения 3000 – 5000 А.

Конструкции автоматических выключателей

Существует довольно много различных конструкций автоматических выключателей как цепей переменного, так и цепей постоянного тока. В последнее время очень широкое распространение получили автоматы малогабаритные, которые предназначаются для защиты от КЗ и токовых перегрузок сетей бытовых и производственных в установках на токи до 50 А и напряжением до 380 В.

Современные автоматические выключатели

Главным защитным средством в таких выключателях являются биметаллические или электромагнитные элементы, срабатывающие с определенной выдержкой времени при нагревании. Автоматы, в которых присутствует электромагнит, обладают довольно большим быстродействием, и этот фактор очень важен при коротких замыканиях.

Ниже показан пробочный автомат на ток 6 А и напряжением не превышающим 250 В:

Пробочный автомат

Где: 1 – электромагнит, 2 –пластина биметаллическая, 3, 4 – кнопки включения и выключения соответственно, 5 – расцепитель.

Биметаллическую пластину, как и электромагнит, включают в цепь последовательно. Если через автоматический выключатель протекает ток выше номинального, пластина начинает нагреваться. При длительном протекании превышающего тока пластина 2 деформируется в следствии нагрева, и воздействует на механизм расцепителя 5. При возникновении в цепи короткого замыкания электромагнит 1, мгновенно втянет сердечник и этим тоже воздействует на расцепитель, который разомкнет цепь. Также данный тип автомата отключается вручную путем нажатия кнопки 4, а включение только ручное путем нажатия кнопки 3. Механизм расцепления выполняется в виде ломающегося рычага или защелки. Принципиальная электрическая схема автомата показана ниже:

Принципиальная схема автоматического выключателя

Где: 1 – электромагнит, 2 – биметаллическая пластина.

Принцип действия трехфазных автоматических выключателей практически ничем не отличается от однофазных. Трехфазные выключатели снабжаются специальными дугогасительными камерами или катушками, в зависимости от мощности устройств.

Ниже приведено видео подробно описывающее работу автоматического выключателя:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector