Ikea73.ru

IKEA Стиль
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Применение синхронного вакуумного выключателя в городских электрических сетях

Применение синхронного вакуумного выключателя в городских электрических сетях

Ачитаев А.А., магистрант; Павлюченко Д.А., канд. техн. наук, доцент,
зав. каф. систем электроснабжения предприятий; Прохоренко Е.В., канд. техн. наук, доцент каф. автоматики; Шевцов Д.Е., аспирант каф. систем электроснабжения предприятий.
Новосибирский государственный технический университет,
630073, г. Новосибирск, пр-т К. Маркса, 20

Рассмотрена тенденция развития коммутационных аппаратов среднего напряжения, а также основные достоинства и недостатки вакуумных выключателей традиционной конструкции. Показан опыт применения вакуумного коммутационного аппарата, реализующего принцип синхронной коммутации как эффективного средства снижения коммутационных перенапряжений и бросков тока в городских электрических сетях 6-10 кВ.

Предложенным алгоритмом синхронной коммутации удалось уменьшить броски тока при включении с 2,1·I пуск до 1,1·I пуск , полностью исключить перенапряжения, повысить коммутационный ресурс выключателя.

Ключевые слова: Синхронная коммутация, синхронный вакуумный выключатель, коммутационные перенапряжения.

Тенденция развития коммутационных аппаратов среднего напряжения

В сетях 6-10 кВ применяются выключатели следующих видов: маломасляные, элегазовые, вакуумные. Причем и в России, и в мире отчетливо прослеживается тенденция расширения доли вакуумных выключателей, что видно из рис. 1 [1]. В Европе и США доля вакуумных выключателей в общем количестве выпускаемых аппаратов составляет 70 %, а в Японии она равна 100 %. В России в последние годы эта доля имеет постоянную тенденцию к росту и в настоящее время составляет более 50 % [2].

Рис. 1. Тенденция развития выключателей среднего напряжения

Преимущества вакуумных коммутационных аппаратов

Рост использования вакуумных выключателей на среднем напряжении объясняется их преимуществами перед другими типами выключателей. Ниже рассмотрены основные преимущества.

1. Вакуумные выключатели обладают высокой надежностью. Вакуумный выключатель практически не обслуживается в течение всего срока службы. Осмотр и периодические проверки вакуумных выключателей рекомендуется проводить один раз в 3-5 лет (табл. 1). Во время этих проверок необходимо выполнить высоковольтные испытания вакуумной дугогасительной камеры и изоляции выключателя, а также проверить переходное сопротивление контактов. В некоторых случаях рекомендуется проверить время включения и отключения главных цепей и работоспособность вспомогательных блок контактов.

Обслуживание и ремонт выключателей 6-10 кВ

Операции технического обслуживания и ремонта

1 раз в 6 месяцев или после операции «О» короткого замыкания

Один раз в 3-5 лет

Не реже 1 раза в 4 года

1 раз в 6-8 лет или после 3000 операций «ВО» или после шести операций «О» короткого замыкания

2. Низкие массогабаритные характеристики аппаратов. Развитие вакуумных выключателей связано с тем, что вакуум является идеальной изоляционной средой. Электрическая прочность изоляционного межконтактного промежутка в вакууме значительно выше, а длина дуги значительно меньше, чем в маломасляных и элегазовых выключателях. Это позволяет существенно снизить габариты вакуумного выключателя.

3. Высокий коммутационный и механический ресурс. Высокий механический ресурс вакуумных выключателей обусловлен, в первую очередь, тем, что ход контактов вакуумной дугогасительной камеры составляет от 6 до 10 мм на напряжения 6-10 кВ. Для маломасляных выключателей на эти же напряжения ход контактов достигает 100-200 мм, а, следовательно, применяется более сложная конструкция привода, требующая больших затрат энергии на включение и отключение выключателя, что приводит к необходимости постоянного ухода и проверок состояния деталей привода, что также повышает эксплуатационные расходы на содержание выключателя.

Как видно из табл. 2, при примерном соответствии срока службы коммутационный ресурс вакуумных выключателей в 5 раз больше элегазовых и почти 17 раз больше, чем у маломасляных выключателей.

3. Низкие эксплуатационные затраты. Низкие затраты вакуумных выключателей определяются отсутствием необходимости содержания масляного и компрессорного хозяйств, кроме того вакуумная дугогасительная камера не требует пополнения дугогасящей среды и использования специализированных защитных средств, например, необходимых при обслуживании (утилизации) аппаратов с элегазом SF 6 . Высокая коммутационная износостойкость позволяет значительно сократить расходы по обслуживанию вакуумных выключателей, а также перерывы в электроснабжении, связанные с выполнением регламентных работ.

4. Экологическая безопасность оборудования. В мире ужесточаются требования по экологической безопасности оборудования, и решения, которые раньше считались приемлемыми, сегодня подвергаются пересмотру. Так законодательство России и стран-участниц Монреальского протокола запрещают выброс в атмосферу фторосодержащих веществ, к которым относится элегаз. Поэтому для обеспечения безопасности и выполнения современных экологических требований, повышения качества и культуры эксплуатации при внедрении элегазового оборудования необходимо оснащение предприятий распределительного электросетевого комплекса современными газотехнологическими аппаратами. Необходимо также оборудование для очистки элегаза и утилизации продуктов его разложения. Это требует серьезных финансовых затрат. Использование вакуумных выключателей идеально с экологической точки зрения.

5. Широкий температурный диапазон работы вакуумных выключателей (от -45 до +55 о С) является важным преимуществом сравнительно с элегазовыми аппаратами. Это особенно актуально в условиях климата Сибири и других северных районов. Однако в любом случае нижний предел диапазона будет всегда определяться допустимой температурой работы релейной защиты и автоматики. Тем не менее, при эксплуатации вакуумных выключателей можно существенно сэкономить на обогреве распределительных пунктов.

Читайте так же:
Как подключить блок розетка выключатель 2 клавишами схема подключения

6. Пониженное энергопотребление коммутационных аппаратов. Ход контактов вакуумной дугогасительной камеры очень мал по сравнению с другими типами камер. Это позволяет значительно уменьшить энергопотребление привода при включении и отключении выключателя.

В табл. 2 представлена сравнительная оценка основных эксплуатационных параметров базовых типов выключателей. Сравнение производилось для выключателей с одинаковыми техническими характеристиками (номинальное напряжение, ток и т.д.).

Вакуумные выключатели

Для повышения качества поставляемой энергии от электрических сетей, распределительные устройства комплектуются современными высоковольтными выключателями с вакуумной дугогасительной средой.

Благодаря качественному отличию от устаревших автоматических выключателей, вакуумные выключатели используются и для вновь возводимых подстанций, и для замены коммутационного оборудования на уже существующих.

Ряд преимуществ вакуумных дугогасительных устройств обуславливается более эффективным принципом гашения дуги и создает предпосылки для предотвращения аварийных режимов энергосистемы и позволяет существенно сократить затраты на обслуживание.

Вид вакуумного автоматического выключателя

Рисунок 1 – Общий вид вакуумного автоматического выключателя

Вакуумный выключатель — это устройство, предназначенное для эксплуатации в составе электрических высоковольтных сетей. Название он унаследовал от особенности конструкции – вакуумной камеры, благодаря которой достигается моментное гашение электрической дуги. Прибор используют в качестве коммутаторов, призванных выполнять отключение оборудования на случай аварийных ситуаций.

1. Назначение

Вакуумные выключатели предназначены для коммутации электрических цепей при нормальных и аварийных режимах в сетях трехфазного переменного тока (частота 50 Гц), номинальным напряжением до 10 кВ с изолированной, компенсированной, заземлённой через резистор или дугогасительный реактор нейтралью. они предназначены для установки в новых и реконструируемых комплектных распределительных устройствах станций, подстанций и других устройств, осуществляющих распределение и потребление электрической энергии во всех отраслях народного хозяйства, в том числе нефтегазодобывающей и перерабатывающей, нефтехимической, химической, горнорудной и др. отраслях.

2. Устройство и принцип действия

Вакуумные выключатели предназначены для совершения коммутационных операций в электроснабжающих сетях высокого напряжения. Конструктивно вакуумный выключатель состоит из трех отдельных полюсов или колонок (по одной на каждую фазу). Все колонки устанавливаются на одном приводе посредством опорного изолятора из полимера, фарфора или текстолита. У каждой из них имеются два вывода для подключения ошиновки. Устройство состоит из двух контактов, подведенных под соответствующие потенциалы полюсов.

Один из них выполняется подвижным, а второй – стационарным, как и в других типах выключателей. Силовые контакты вакуумного выключателя располагаются внутри герметичной камеры, способной сохранять вакуум в течение длительного периода времени. Для чего в состав камеры включаются специальные металлические сплавы и керамические добавки.

Для постоянного поддержания состояния сильно разреженной газовой среды, внутри вакуумной камеры, устройство комплектуется сильфонным компонентом. Он исключает возможность проникновения воздуха или другого газа внутрь вакуумной камеры.

Конструкция вакуумного выключателя
Рисунок 2 – Конструкция вакуумного выключателя

3. Принцип гашения электрической дуги

При разрыве контактов между поверхностями возникает ионизация пространства. В вакуумных выключателях применяется технология, отличная от воздушных и масляных. Основной принцип основан на том, что в идеальном вакууме отсутствует какое-либо вещество, способное выделять заряженные частицы. Поэтому в момент разделения контактов, из-за разности потенциалов, единственным источником ионизации являются пары раскаленного металла. Они продолжают движение между контактными поверхностями, но при переходе синусоиды электрического тока через ноль, заряженные частицы утрачивают энергию для ионизации и перемещения и их место занимает пустое пространство с высокой электрической плотностью и дуга рвется. Ионы металлов примыкают к ближайшей поверхности – контактам или стенкам камеры. Такой принцип действия позволяет сократить время на прекращение горения дуги и предоставляет ряд преимуществ, в сравнении с другими типами коммутационных аппаратов. Однако чрезмерные коммутационные перенапряжения могут привести к деформации поверхности, что будет препятствовать нормальному замыканию контактов, увеличит переходное сопротивление и вызовет перегрев внутри вакуумной камеры.

4. Преимущества и недостатки вакуумных выключателей

  • Небольшие габариты, в сравнении с масляными и воздушными выключателями.
  • Возможность быстрой замены, особенно в выкатных ячейках.
  • Сравнительно низкий уровень шума.
  • Экологичность.
  • Не требуют периодической компенсации уровня рабочей среды, снижая объемы работ по обслуживанию к минимуму.
  • Высокая надежность.
  • Возникновение перенапряжения при отсекании малых индуктивных токов.
  • Малый коммутационный ресурс отключения аварийных токов.

5. Особенности эксплуатации

Несмотря на неприхотливость выключателей от 6 до 35 кВ, их ревизию, обслуживание нужно проводить не реже 1 раза в 4 года.

К общим рекомендациям можно отнести:

  • Необходимость периодической проверки скорости срабатывания;
  • Использование для установки силовых розеток;
  • Необходимость проверки корректности работы после скачков напряжения;
  • При поломке в первую очередь проверяется на состояние контактов и проводки.

6. Особенности выбора

Ввиду наличия высокого спроса на такой вид выключателей, их производство налажено огромным количеством независимых компаний. Это порождает различие конструкций, технических характеристик, а значит, вынуждает использовать определенные критерии выбора:

  • Номиналы напряжения, мощности, сопротивления.
  • Значения токов отключения, динамической устойчивости.
  • Номинал теплового импульса сети.
  • Принцип работы бортового микропроцессора.
  • Входные/выходные значения сигнала.

7. Сферы применения вакуумных выключателей

  • В распределительных электроустановках электрических станций и подстанций.
  • В металлургии для питания печных трансформаторов, снабжающих оборудование для выплавки стали.
  • В нефтегазовой и химической промышленности на пунктах перекачки, переключающих пунктах и трансформаторных подстанциях.
  • Для работы первичных и вторичных цепей тяговых подстанций на железнодорожном транспорте, осуществляет питание вспомогательного оборудования и не тяговых потребителей.
  • На горнодобывающих предприятиях для питания комбайнов, экскаваторов и других видов тяжелой техники от комплектных трансформаторных подстанций.

Выводы

Вакуумные выключатели с номинальным напряжением 6, 10 и 35 кВ являются одним из наиболее востребованных сегодня типов коммутационного оборудования высоковольтных сетей. Они более надежны в эксплуатации, долговечны и безопасны для обслуживающего персонала и окружающей среды. Вакуумные выключатели от других видов устройств отличаются относительной простой и надёжной структурой. Поэтому этот вид оборудования служит длительное время без особых нареканий.

Ресурс естественного износа определяется числом операций, равным не менее 20000. При условии своевременного производства технического обслуживания этот ресурс возрастает на 5-10%. Между тем, техническое обслуживание ВВ ограничивается небольшим количеством лёгких операций.

Лаб. раб. по ЭЧС и ПС / Лаб_раб №2 Конструкции вакуумных и элегазовых выключателей

Электрическая прочность вакуумного промежутка во много раз больше, чем воздушного при атмосферном давлении. Это свойство используется в вакуумных выключателях. Вакуумные выключатели 6—10 кВ широко применяются для замены маломасляных и электромагнитных выключателей в комплектных распределительных устройствах (КРУ).

1.1 Выключатель ВБП-С-10-31,5/1600

Быстродействующий вакуумный выключатель ВБП-С-10-31,5/1600 устанавливается в секционных и вводных ячейках КРУ 10 кВ (Рис. 1). Он состоит из трех полюсов по числу фаз и общим приводом на три полюса.

Рис. 1. Выключатель вакуумный ВБП-С-10-31,5/1600 УЗ:

1 — выкатная тележка; 2 — рама; 3 — изоляционные тяги; 4 — узел поджатия; 5 — токовыводы; 6 — изоляционный каркас; 7 — вакуумная дугогасительная камера (КДВ); 8 — пружинно-моторный привод; 9 — кулачковый вал привода; 10 — кнопка отключения; 11 — блок защелок; 12 — блок сигнализации; 13 — отключающая пружина; 14— буфер; 15— вал выключателя; 16— индукционно-динамическое устройство управления (ИДУУ)

Его номинальный ток составляет 1600 А, а номинальный ток отключения – 31,5 кА. В КРУ он устанавливается на выкатной тележке 1. Дугогасительная камера 7 типа КДВ-10 укреплена на токовыводах 5 в изоляционном каркасе 6 и системой рычагов связана с приводом. При включении сначала происходит заводка пружинно-моторного привода до положения «Готов». После этого подается сигнал на включение на ИДУУ (индукционно-динамическое устройство управления), которое, разряжаясь, сбивает удерживающую защелку на приводе, пружины поворачивают кулачковый вал 9, который воздействует на рычаг вала выключателя. Вал, поворачиваясь, через систему рычагов и изоляционные тяги 3 воздействует на подвижный контакт КДВ, выключатель включается.

При этом одновременно сжимается и ставится на механическую защелку пружина отключения 13. Отключение производится кнопкой отключения 10, которая выбивает удерживающую защелку, а отключающая пружина 13 через систему рычагов возвращает подвижный контакт камеры в отключенное состояние. Управление выключателем может осуществляться вручную или дистанционно.

Выключатель имеет полное время отключения 0,04 с, время включения 0,03 с.

Важнейшим элементом конструкции вакуумного выключателя является дугогасительная камера с контактами. Здесь применена камера типа КДВ-10-1600-20 (Рис.2).

Рис. 2. Вакуумная дугогасительная камера КДВ-10-1600-20:

1 — рабочие контакты; 2 — дугогасительные контакты; 3 — зазоры; 4, 5 — токоведущие стержни; 6 — верхний фланец; 7 — сильфон; 8, 9 — экраны; 10 — керамический корпус; 11 — крепежное кольцо; 12 — корпус

Рабочие контакты 1 в камере меют вид полных усеченных конусов с радиальными прорезями. Такая форма контактов при размыкании создает радиальное электродинамическое усилие, заставляющее перемещаться дугу через зазоры 3 на дугогасительные контакты 2. Материал контактов подобран так, чтобы уменьшить количество испаряющегося металла. Вследствие глубокого вакуума (10 -4 —10 -6 ) происходит быстрая диффузия заряженных частиц в окружающее пространство, и при первом переходе тока через нуль дуга гаснет.

Подвод тока к контактам осуществляется с помощью медных стержней 4 и 5. Подвижный контакт крепится к верхнему фланцу 6 с помощью сильфона 7 из нержавеющей стали. Металлические экраны 8 и 9 служат для выравнивания электрического поля и для защиты керамического корпуса 10 от напыления паров металла, образующихся при горении дуги. Экран 8 крепится к корпусу камеры с помощью кольца 11. Поступательное движение к верхнему контакту обеспечивается корпусом 12. Ход подвижного контакта составляет 12 мм.

1.2 Выключатель ВВ-TEL-10-1000

Общий вид и габаритные размеры вакуумного выключателя ВВ-TEL-10-1000 выпускаемого производственным объединением «Таврида-электрик» показаны на рис.3.

Рис.3 Общий вид выключателя ВВ-TEL-10-1000:

1,2— подключение главных цепей; 3 — кнопка ручного отключения; 4 — заземление; 5 — подключение вторичных цепей.

Выключатель состоит из трех одинаковых полюсов, установленных на общем основании. Каждый полюс включает или отключает цепь соответствующей фазы.

Особенностью данного выключателя является наличие магнитной защелки, удерживающей в сжатом состоянии отключающую пружину до подачи команды на отключение.

На рис.4 показан разрез конструктивной схемы одного полюса выключателя. В разомкнутом положении контакты выключателя 1 и 3 удерживаются отключающей пружиной 9 через тяговый изолятор 5. При подаче сигнала «Вкл» подается питание в катушку электромагнита 10; якорь 8, сжимая отключающую пружину, перемещается вверх вместе стяговым изолятором и подвижным контактом 3, который замыкается с неподвижным контактом 1. В это время кольцевой магнит 7 запасает магнитную энергию, необходимую для удержания выключателя во включенном положении, а катушка 10 постепенно обесточивается, после чего привод оказывается подготовленным к операции отключения.

Во включенном положении выключатель удерживается силой магнитного притяжения якоря 8 к кольцевому магниту 7 так называемой «магнитной защелкой», при этом энергии из внешней цепи не потребляется.

При подаче сигнала «Откл» блок управления подает импульс противоположного направления в катушку 10, размагничивая магнит и снимая привод с магнитной защелки. Под действием пружин 6 и 9 якорь 8 перемещается вниз вместе с тяговым изолятором 5 и подвижным контактом 3, выключатель отключается.

Рис. 4. Разрез полюса выключателья BB-TEL-10-1000:

1 — неподвижный контакт ВДК; 2 — вакуумная камера (ВДК); 3 — подвижный контакт ВДК; 4 — гибкий токосъем; 5 — тяговый изолятор; 6 — пружина поджатая; 7 — кольцевой магнит; 8 — якорь; 9— отключающая пружина; 10 — катушка; 11 — вал; 12 — постоянный магнит; 13 — герконы (контакты для внешних вспомогательных цепей)

1.3 Достоинства вакуумных выключателей: простота конструкции, высокая степень надежности, высокая коммутационная износостойкость, малые размеры, пожаро- и взрывобезопасность, отсутствие загрязнения окружающей среды, малые эксплуатационные расходы.

1.4 Недостаток вакуумных выключателей — возможность коммутационных перенапряжений при отключении небольших индукционных токов.

2. Элегазовые выключатели

Элегаз SF6 представляет собой инертный газ, плотность которого в 5 раз превышает плотность воздуха. Электрическая прочность элегаза в 2 — 3 раза выше прочности воздуха. Элегазовый выключатель представляет собой замкнутую систему без выброса газа наружу. Различают колонковые элегазовые выключатели и баковые.

В баковых выключателях гашение дуги может осуществляется за счет вращения электрической дуги в элегазе с помощью магнитного поля, созданного отключаемым током.

В колонковых элегазовых выключателях применяются автокомпрессионные дугогасительные устройства (рис. 5). При отключении цилиндр 4 вместе с контактом 3 перемещается вниз, образуется разрыв между подвижным 3 и неподвижным 1 контактами и загорается дуга. Поршень 5 остается неподвижным, поэтому При движении цилиндра вниз элегаз над поршнем сжимается, создается дутье в объем камеры и полый контакт 1, столб дуги интенсивно охлаждается, и она гаснет. При включении цилиндр 4 перемещается вверх, контакт 1 оказывается в верхней камере цилиндра и цепь замыкается.

Рис. 5. Схема дугогасительного устройства элегазового

выключателя с односторонним дутьем:1 — неподвижный полый контакт; 2 —сопло из фторопласта; 3 — подвижный контакт; 4 — подвижный цилиндр; 5— поршень

Более эффективным является двустороннее дутье, именно такие дугогасительные камеры применяются в современных элегазовых выключателях, построенных на модульном принципе. Так, в выключателях на 110 кВ— один дугогасительный модуль, на 220 кВ — два, на 500 кВ — четыре. Соответственно меняется изоляция относительно земли.

2.1 Выключатель ВГУ-220-45/3150У1.

На рис. 6 показан выключатель ВГУ-220-45/3150У1 (UHM = = 220кВ, Iоткл.ном=45 кА, IНОМ=3150 А, У — климат умеренный, 1 – установка открытая). Выключатель имеет три полюса. Полюс имеет Y-образную компоновку. В каждом полюсе имеется две последовательно соединенные дугогасительные комеры с контактами. Параллельно контактам камер включены конденсаторы 5 емкостного делителя. Емкостные делители обеспечивают равномерное распределение напряжения между разрывами полюса. Дугогасительные камеры и конденсаторы представляют собой дугогасительный модуль 1 полюса. Этот модуль крепится на опорной изоляционной колонке 2. В каждом полюсе имеется шкаф управления 3. На все три полюса имеется распределительный шкаф 4. Распределительный шкаф предназначен для пневматической и электрической связи трех полюсов выключателя.

Отключение осуществляется пневматическим приводом, включение — пружинами, которые заводятся при отключении.

Рис. 6. Выключатель элегазовый колонковый-220-45/3150:

1 — модуль дугогасительный; 2 — колонка опорная; 3 — шкаф управления с приводом; 4 — шкаф распределительный; 5 — конденсаторы (емкостные делители)

2.1 Выключатель ВГБЭ-35-12,5/630.

На рис.7 представлен баковый выключатель ВГБЭ-35-12,5/630. Баковые выключатели на 110 кВ и более имеют три полюса. Каждый полюс выполняют в отдельном баке. Этот выключатель имеет номинальное напряжение 35 кВ, все три его фазы размещены в одном баке 3 с контактной дугогасительной системой. Номинальный ток отключения выключателя составляет 12,5 кА, а номинальный ток – 600 А. Номинальное давление элегаза в баке должно быть 0,45 МПа. При снижении давления характеристики выключателя не будут обеспечены. Для сигнализации о снижении давления в конструкции предусмотрен сигнализатор давления 6. Гашение дуги осуществляется за счет вращения электрической дуги в элегазе с помощью магнитного поля, созданного отключаемым током. Над баком возвышаются высоковольтные вводы 1 , в нижней части которых расположены встроенные трансформаторы тока 2 , что упрощает конструкцию распределительных устройств. Вводов всего шесть, по два на каждую фазу.

Привод выключателя электромагнитный, он расположен в шкафу 9. При низких температурах элегаз может конденсироваться, чтобы избежать этого, предусмотрен подогрев 8. Для замены элегаза имеется клапан 5.

Рис. 7. Выключатель элегазовый баковый ВГБЭ-35:

1 — ввод; 2 — трансформатор тока; 3 — бак с контактной и дугогасительной системами; 4 — коробка механизма; 5 — клапан; 6 — сигнализатор давления; 7— клеммная коробка; 8 — подогрев; 9 — шкаф с приводом

Достоинства элегазовых выключателей: пожаро- и взрывобезопасность, быстрота действия, высокая отключающая способность, малый износ дугогасительных контактов, возможность создания серий с унифицированными узлами (модулями), пригодность для наружной и внутренней установки.

Недостатки: необходимость специальных устройств для наполнения, перекачки и очистки SF6, относительно высокая стоимость SF6.

Трансформаторные подстанции высочайшего качества


В конце XX века инновационная конструкции выключателей ВВ /TEL . произвели переворот в мире коммутационной аппаратуры 6-10кВ и позволили совершить прорыв на пути создания современных КРУ высокой надежности, не требующие обслуживания выключателя на протяжении всего срока службы. Запатентованная конструкция, легкость и не прихотливость конструкции ВВ /TEL . позволяет встроить выключатель в любую, существующую, ячейку КРУ или КСО. либо создать новую с уникальными потребительскими качествами. Сегодня ВВ /TEL . применяется на 5-ти континентах мира, чем подтверждает удовлетворение самым жестким требованиям эксплуатации будь, это условия Кольского полуострова с зимним морским климатом, либо широта Египта, с изнуряющим зноем зимой и особенно летом, или влажный климат Вьетнама. Такая популярность основывается на существующем разнообразии решений, которые уже имеются или позволяет предложить выключатель ВВ /TEL по модернизации распределительных устройств, повышению их надежности и всей энергосистемы в целом.

Вакуумные выключатели (ВВ) предназначены для коммутации электрических цепей при нормальных и аварийных режимах в сетях трехфазного переменного тока (частота 50 Гц), номинальным напряжением до 10 кВ с изолированной, компенсированной, заземлённой через резистор или дугогасительный реактор нейтралью. ВВ предназначены для установки в новых и реконструируемых комплектных распределительных устройствах станций, подстанций и других устройств, осуществляющих распределение и потребление электрической энергии во всех отраслях народного хозяйства, в том числе нефтегазодобывающей и перерабатывающей, нефтехимической, химической, горнорудной и др. отраслях.

Структура условного обозначения выключателей

  • BB/TEL-10-20/1000
  • BB/TEL-10-20/1600
  • BB/TEL-10-31,5/1000
  • BB/TEL-10-31,5/1600
  • BB/TEL-10-31,5/2000
  • BB/TEL-10-31,5/2000 Q

Устройство и работа выключателей

Принцип дугогашения.
Гашение дуги переменного тока осуществляется в вакуумной дугогасительной камере (ВДК) при разведении контактов в глубоком вакууме (остаточное давление порядка мм рт. ст.). Носителями заряда при горении дуги являются пары металла. Из-за практического отсутствия среды в межконтактном промежутке, конденсация паров металла в момент перехода тока через естественный ноль осуществляется за чрезвычайно малое время ( с ), после чего происходит быстрое восстановление электрической прочности ВДК. Электрическая прочность вакуума составляет порядка 30 кВ/мм, что гарантирует отключение тока при расхождении контактов более 1 мм.
В выключателях применяется современная конструкция ВДК с аксиальным магнитным полем. Дуга в таком поле находится все время в диффузионном состоянии, что существенно уменьшает износ, который не превышает 1 мм после исчерпания коммутационного ресурса.
Конструкция выключателей.
Выключатели состоят из трех полюсов, установленных на металлическом корпусе, в котором размещаются электромагнитные приводы каждого полюса с магнитной защелкой, удерживающей выключатель неограниченно долго во включенном положении после прерывания тока в катушке электромагнита привода.
Основные узлы выключателей на ток до 1000 А размещаются в закрытом изоляционном корпусе круглого сечения, выполненном из механически прочного и дугостойкого материала, защищающего элементы полюса от механических повреждений и воздействий электрической дуги тока КЗ.

Крепление выключателей к металлическим элементам КРУ и КСО осуществляется посредством болтов М10, резьбовые отверстия для которых имеются на боковых сторонах металлического корпуса. Выключатели могут работать в любом пространственном положении. Выключатели на номинальный ток 1600 А конструктивно отличаются от выключателей на 630-1000 А устройством изоляционных корпусов, способом установки в них ВДК и способом крепления выключателей.
Изоляционные корпусы прямоугольного сечения открыты снизу и сверху для вентиляции воздуха и охлаждения токоведущих частей. С передней и задней сторон к корпусам крепятся изоляционные листы толщиной 10 мм для придания им необходимой жесткости. На противоположной стороне токоведущих выводов круглого сечения в полимерной части выключателя имеются закладные металлические втулки ( 6 шт.) с отверстиями под болт М16, с помощью которых выключатели устанавливаются на вертикальное металлическое основание приводом вниз или вверх.
Устройство полюса.
Разрез полюса выключателя представлен на рисунке. В состав полюса входят следующие основные элементы: ВДК 2 с неподвижным 1 и подвижным 3 контактами и сильфоном, гибкий токосъем, тяговый изолятор 5, токоведущие выводы и электромагнитный привод. Привод состоит из кольцевого электромагнита 13, якоря 12, катушки 11, пружин отключения 9 и дополнительного поджатия 10, тяги 15 устройства ручного отключения. Катушки электромагнита включены в цепь управления параллельно и используются для включения и отключения выключателя.
Полюса механически связаны между собой промежуточным валом 8, на котором установлен кулачок для управления вспомогательными кон-тактами, используемыми во внешних цепях (управления, сигнализации и др.). Выключатели, предназначенные для частых коммутационных операций, содержат в своей конструкции усиленный привод и камеру ВДК, которые не влияют на габаритные и присоединительные размеры.
Работа выключателя.
Включение.
В отключенном положении подвижные части полюса удерживаются силой отключающей пружины 9 независимо от пространственно положения выключателя. Включение и отключение выключателя производится от блока управления (БУ), который является неотъемлемой частью ВВ.
При подаче команды включения БУ пода( напряжение на катушку 11 электромагнит Протекающий при этом ток создаёт магнитный поток в зазоре между якорем 12 и кольцевым магнитом 13, под действием которого якорь втягивается внутрь электромагнита и через тяговый изолятор 5, сжимая пружину отключения 9 и воздействуя на подвижный контакт ; замыкает контакты ВДК.
Скорость замыкания контактов составляв около 1 м/с. Она является оптимальной для процесса включения и предупреждения дребезг контактов при включении.
Замыкание подвижного контакта с неподвижным происходит в момент, когда между якорем верхней крышкой электромагнита остается зазор 2 мм. Проходя это расстояние, якорь сжимает пружину поджатия 10 и создает необходимо контактное нажатие. После замыкания магнитно системы якорь встает на магнитную защелку удерживается в этом положении неограниченно долго за счет остаточной индукции кольцевого электромагнита 13. Общий ход якоря 8 мм, ход подвижного контакта 6 мм.
Запас по усилию удержания (сила, необходима для отрыва якоря от верхней крышки электромагнита, приложенная вдоль оси привода), составляет 450-500 Н для одного полюса выключателя.
В случае обрыва цепи катушки электромагнита одного из полюсов выключатель не фиксируется во включенном положении и отключается, тем самым предупреждается работа выключателя в неполнофазном режиме.
В процессе включения ВВ якорь через кинематическую связь поворачивает вал 8 и установленный на нем кулачок, который управляет контактами вспомогательных цепей (микро-переключателями).
Длительность подачи напряжения на катушку электромагнита устанавливается блоком управления и составляет 60 — 80 мс в зависимости от типа БУ. Она выбрана с запасом, поэтому момент размыкания геркона или микропереключателя в цепи управления включением не влияет на включающую способность привода и не требует наладки и проверки эксплуатационным персоналом.
Источником электрической энергии для включения ВВ служат предварительно заряженные малогабаритные конденсаторы, устанавливаемые в БУ (BU) или в блоке питания БП (BP).
Отключение.
При подаче команды отключения БУ подает на катушку электромагнита напряжение противоположной полярности и определенной длительности. При этом электромагнит частично размагничивается и якорь 12 снимается с магнитной защелки. Под действием пружины отключения и пружины дополнительного поджатия якорь разгоняется и наносит удар по тяговому изолятору, соединенному с подвижным контактом 3 вакуумной камеры. Ударное усилие, создаваемое якорем электромагнита, превышает 2000 Н, что позволяет отключать выключатель даже при наличии точечной сварки контактов, которая может иметь место при включении ВВ.
После удара подвижный контакт приобретает высокую стартовую скорость, необходимую для успешного отключения тока КЗ, и под действием отключающей пружины совместно с другими подвижными частями занимает конечное отключенное положение.
Ручное отключение.
Ручное отключение осуществляется путем воздействия на кнопку ручного отключения, которая через толкатель 15, шарнирно связанный с валом 8, воздействует через вал привода на якоря электромагнитов и разрывает магнитную систему. Кнопка ручного отключения, связанная с валом 8, может служить указателем положения выключателя.
Усилие на кнопке отключения при ударном воздействии составляет 200 — 250 Н.
Автономное включение.
Наличие в схеме управления выключателями батареи малогабаритных конденсаторов позволяет осуществлять автономное включение ВВ на обесточенной подстанции с помощью двух стандартных элементов питания 9 В, подключая их низковольтному входу БУ. Имеющийся в БУ или блоке питания преобразователь повышает напряжение питания до необходимого и заряжает в течение короткого времени (менее 1 мин) батарею конденсаторов, после чего выключатель готов к выполнению операции «В» или «ВО».
Автономное включение может также выполняться с помощью инвентарных переносных блоков автономного включения (БАВ), поставляемых предприятием по заказу.

Устройства управления вакуумными выключателями являются их неотъемлемой частью и изготавливаются в виде отдельных блоков, устанавливаемых в релейных отсеках КРУ, на панелях камер КСО или на выкатных элемента КРУ. Они обеспечивают включение и отключение ВВ от источника постоянного, выпрямленного или переменного оперативного тока, блокировку от повторного включения ВВ, отключение от трансформаторов тока при отсутствии напряжения питания, а также ряд дополнительных функций.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector