Ikea73.ru

IKEA Стиль
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Испытание изоляции высоковольтного оборудования

Испытание изоляции высоковольтного оборудования

При техническом обслуживании по фактическому состоянию (CBM – Condition Based Maintenance), основанном на прогнозировании запаса надежности, используются данные результатов проверки и контроля диагностических параметров электрооборудования через фиксированные интервалы времени. Эти интервалы выбираются по статистическим данным в соответствии с конкретной ситуацией и определенным типом электрооборудования. Преимущества такого подхода – оптимизация затрат на техническое обслуживание и обеспечение высоких уровней надежности и безопасности./p>

Стратегии технического обслуживания

Для достижения оптимального баланса между затратами и эффективностью работы используются следующие стратегии технического обслуживания:

  • Работа до возникновения отказа (техническое обслуживание на основе события);
  • Запланированное техническое обслуживание по текущему состоянию, основанное на прогнозиро-вании запаса надежности (CBM);
  • Обслуживание на основе планово-предупредительного принципа.

Деградация (старение) изоляции

Имеются несколько основных причин для деградации изоляции:

  • Воздействие электрического напряжения (перенапряжение, удары молний, частичные разряды);
  • Тепловое напряжение (условия нагрузки);
  • Механическое усилие (вытягивание, изгиб, осадка фундамента);
  • Химическая коррозия (воздействие воды, соли, масла и загазованности);
  • Внешнее воздействие (загрязненная внешняя среда, доступ воды).

Старение изоляции, особенно вызываемое доступом воды, является постепенным процессом деградации, когда соответствующие факторы взаимодействуют друг с другом с образованием так называемых водяных древовидных структур в изоляции.

Стандарты на испытания высоковольтной изоляции

Разрушающие высоковольтные испытания оборудования на постоянном или переменном токе

Традиционные высоковольтные испытания изоляции на постоянном токе – простейший путь получения сведе-ний общего характера о состоянии изоляции. Такая проверка изоляции может выполняться в виде простейшего испытания по типу «годен/не годен».

Согласно новому европейскому документу по гармонизации стандартов CENELEC HD 620 S1 — 1996 для кабе-лей с синтетической изоляцией испытание на постоянном токе не должно использоваться применительно к пластиковой изоляции кабеля; а рекомендуется лишь испытание на переменном токе частотой 0,1 или 50 Гц. Статистика результатов испытаний в условиях эксплуатации более чем 15000 кабелей с полиэтиленовой изоляцией показала, что ?68% от общего числа зарегистрированных отказов происходило в течение 12 минут, ?89% — в течение 30 минут, ?95% через 45 минут, 100% через 60 минут. Фактическое время испытания и напряжение могут определяться поставщиком и пользователем кабеля и зависят от стратегии испытания, кабельной системы, состояния изоляции, а также выбранного метода испытания.

Неразрушающая диагностика оборудования – новая стратегия технического обслуживание
по фактическому состоянию, основанная на прогнозировании запаса надежности (CBM)

Испытание сопротивления изоляции

Для проведения испытаний сопротивления изоляции используется источник постоянного тока. В этом случае определяется изменение тока утечки, что указывает на ухудшение характеристик или повреждение изоляции. В электроэнергетике, нефтехимической и других крупных отраслях промышленности диагностические испыта-ния изоляции обычно выполняются применительно к электродвигателям и генераторам в пределах от 500 до 5000 В.

Диагностическое испытание тока релаксации (IRC-испытание)

Неразрушающая диагностика кабеля с использованием IRC-анализа может предоставить важную информацию о старении и деградации полимерной изоляции.

Контроль тангенса угла потерь tg ?

Информация о величине tg ? позволяет оценить общее состояния кабеля независимо от его длины. Анализ ре-зультатов испытаний в условиях эксплуатации за последние 15 лет позволяет различать находящееся в эксплуатации оборудование с «небольшим», «умеренным» и «сильным» старением. Испытание на tg ? выявляет карбонизацию, ионизацию или корону при повышенном уровне напряжения. В случае пластиковой изоляции измерение tg ? на сверхнизких частотах (СНЧ) является идеальным средством обнаружения участков деграда-ции, вызываемых водяными древовидными структурами.

Измерение частичных разрядов и обнаружение дефектов с помощью динамической рефлектометрии

Диагностика частичных разрядов является хорошо зарекомендовавшим себя методом неразрушающего испытания изоляции. При проведении лабораторных испытаний измерение частичного разряда является хорошо известным обычным испытанием. Требуемые при этом уровни частичного разряда зависят от типа объекта диагностики. В случае высоковольтных кабелей такие уровни находятся в диапазоне от нескольких до 100 нКл.

Для проверки в условиях эксплуатации точное значение уровня частичных разрядов менее важно по сравнению с положением (локализацией) их источника. Амплитуда частичных разрядов зависит от типа дефекта изоляции и расстояния, вызывающего затухание. Одним из наиболее важных индикаторов оценки состояния изоляции кабеля является уровень напряжения начала частичного разряда. Для локализации таких дефектов в кабелях используется классический метод динамической рефлектометрии.

Диагностика СНЧ

СНЧ измерения на частоте 0,1 кГц являются эффективными благодаря очень высокой скорости роста электрической древовидной структуры в месте дефекта. При этом для определения поврежденного участка изоляции с помощью СНЧ требуется очень незначительное время, что является существенным преимуществом по сравне-нию с испытаниями на частоте сети.

Длительность проведения испытания

Длительность проведения испытания и величина выдерживаемого напряжения являются наиболее важными параметрами при выполнении оценки состояния изоляции. Десять циклов испытаний на частоте 0,1 Гц занима-ют 100 секунд; этого времени, в основном, достаточно для анализа и локализации дефектов оборудования, связанных с частичными разрядами!

Читайте так же:
Концевой выключатель света багажника

Разрушающее или неразрушающее испытание?

Напряжение до 1,7 Uo или 2,0 Uo может быть неразрушающим, если изоляция является все еще новой.

На таком уровне термин «диагностика» при проведении испытания в условиях эксплуатации использовался в течение последних 15 лет.

Метод СНЧ (VLF truesinus®) успешно использовался для оценки состояния изоляции кабелей с применением неразрушающей системы измерения tg ? и частичного разряда PD. При этом необходимо, чтобы СНЧ источник высокого напряжения не имел высших гармоник и имел чрезвычайно низкий уровень шума для получения достоверных результатов при выполнении измерения частичных разрядов в условиях эксплуатации. Метод частичных разрядов в твердых диэлектриках является наиболее эффективным при обнаружении мест дефектов, особенно в муфтах и в концевых заделках!

Рекомендуемая последовательность при неразрушающих испытаниях высоковольтного оборудования

Высоковольтная диагностика на снч, включая измерение тангенса дельта

Цель:

  • Стратегическое планирование, создание базы данных для классификации оборудования по тангенсу дельта, как НОВОЕ, ПОВРЕЖДЕННОЕ или ДЕФЕКТНОЕ для планирования ремонта, замены или обновления;
  • Техническое обслуживание и диагностическая проверка каждый год или с периодом в пять лет;
  • Проверка рабочих характеристик после ремонта;
  • Снятие с эксплуатации оборудования или системы, которая не может больше надежно эксплуатироваться.

Процедура

  • Измерение тангенса дельта вплоть до 2Uo в виде 3 шагов по напряжению; Uo; 1,5Uo, 2Uo. Время проверки не должно превышать 10 минут.

Высоковольтное СНЧ испытание с измерением тангенса дельта и частичных разрядов

Цель:

  • Проверка рабочих характеристик;
  • Прогнозирование технического обслуживания;
  • Уменьшение числа вынужденных простоев;
  • Увеличение надежности системы;
  • Стратегическое планирование; обнаружение опасных дефектов типа водяных древовидных структур; плохих соединений, муфт или законцовок; пользователь подготавливается заменять муфты или секции кабеля.
  • Уровни испытательного напряжения в кабельных системах и сетях
  • Диагностический уровень СНЧ напряжения макс. 2Uo
  • Уровень СНЧ напряжения испытания макс. 3Uo

Процедура:

СНЧ испытания рекомендуются для проверки рабочих характеристик оборудования. Измерение тангенса дельта и частичных разрядов – до максимального уровня напряжения проверки 2Uo или 3Uo при 0,1 Гц в зависимости от возраста изоляции. Запись значений тангенса дельта при Uo, 1,5Uo и 2Uo. Время (длительность) испытаний должно быть как можно меньше.

В случае более жестких требований к надежности пользователь может принять решение определять значения тангенса дельта и частичных разрядов при 3Uo с некоторым риском возможного пробоя во время процедуры испытания. При этом регистрируется уровень частичных разрядов.

Заключение

За последние десять лет практика и режимы испытаний оборудования в условиях эксплуатации претерпели значительные изменения. Стала применяться аппаратура измерения тангенса угла потерь на СНЧ и частичных разрядов с использованием новых диагностических методов. Стали применяться новые критерии при испытаниях кабельных сетей, особенно, в случае твердых диэлектриков. Они требуют использования новой методологии и новых процедур испытаний на основе СНЧ. Эти новые диагностические методы являются полезными инструментами для достижения общего повышения надежности сети. Стратегии, основывающиеся на применении приоритетной структуры испытаний, будут снижать общую стоимость технического обслуживания и по-вышать срок службы оборудования.

Статьи по теме:

Глобальная мульти-технологическая компания делает ваш следующий объект строительства безопаснее, быстрее и более экономически эффективным. Radiodetection Ltd. со штаб-квартирой в Бристоле, Великобритания основана в 1970 году. Глобальная сеть продаж и сервисных центров обслуживания и поддержки покупателей окутывает весь земной шар.

Отраслевые компании всего всего мира полагаются на Инструменты по предотвращению повреждений кабелей (C.A.T®) от Radiodetection. Чтобы избежать случайное повреждение подземных коммуникаций при раскопках чаще всего используют CAT4. А с помощью локаторов Radiodetection RD7100 и RD8100 можно точно определить их положение. Приборы по испытанию кабелей от Radiodetection быстро определяют участки с разрывами или дефектами старения изоляции.

Подразделение по обследованию – Pearpoint предлагает телеинспекционные системы контроля нисходящих скважин и трубопроводов. Все телеинспекционные кроулеры оснащенные цифровыми видеосистемами. Благодаря этому водоканалы и водоснабжающие организации осуществляют регулярный осмотр и техническое обслуживание. Находят и вовремя устраняют неисправности, проводят ремонт канализационных и других труб в сложных условиях.

Обязательство перед заказчиками – основа успеха Radiodetection. Всё это вместе в сочетании с инновационными разработками, квалифицированными специалистами произвели серию приборов, без которых сложно представить жизнь и работу инженеров и подрядчиков из более чем шестидесяти стран мира.

Каждый продукт семейства Radiodetection разработан и произведен по самым высоким стандартам. Технологические операции аккредитованы по ISO 9001. Чтобы поддержать эту приверженность качеству, клиенты Радиодетекшн обеспечены квалифицированным сервисом и технической поддержкой. Сервисные центры расположены во всем мире, у клиентов есть доступ к «практическим» советам и бесплатным консультациям.

Методика испытаний кабельных линий с изоляцией из сшитого полиэтилена

Доброго времени суток, уважаемые гости сайта «Помощь электрикам». В сегодняшней статье я бы хотел рассмотреть испытание кабельных линий с изоляцией из сшитого полиэтилена (СПЭ). Методика испытаний кабельных линий с изоляцией из сшитого полиэтилена имеет очень сильное различие с нами уже знакомой методикой по испытанию кабельных линий бумажной изоляцией.

Читайте так же:
Антенная розетка как подключить кабель

Доброго времени суток, уважаемые гости сайта «Помощь электрикам». В сегодняшней статье я бы хотел рассмотреть испытание кабельных линий с изоляцией из сшитого полиэтилена (СПЭ). Методика испытаний кабельных линий с изоляцией из сшитого полиэтилена имеет очень сильное различие с нами уже знакомой методикой по испытанию кабельных линий бумажной изоляцией.

Если обратится к нормативным документам, например ПУЭ-7 или ПТЭЭП, то мы обнаружим, что в их отсутствуют нормы по испытанию этих кабельных линий, но идут рекомендации по обращению к нормам по испытанию заводов – изготовителей данных КЛ. Просмотрев всевозможные инструкции, паспорта, и т.д., был сделан вывод: Различные заводы изготовители предлагаю различные методики и нормы по испытанию, причем имея существенные различия и во времени испытания, и в величие испытуемого напряжения.

В последнее время стали активно внедрятся кабельные линии с изоляцией из сшитого полиэтилена. Они идут на смену уже устаревшим кабельным линиям с бумажной изоляцией . Во всех регионах активно идут реконструкции воздушных линий электропередач с последующим переводом в кабельное исполнение.

Кстати, выбрать и приобрести электротехническое оборудование (трансформаторы тока или напряжения), Вы можете перейдя по ссылке.

Это в первую очередь связано с тем, что ВЛ имеют неэстетический вид, занимают огромные территории, в отличии от КЛ.

Кабельная линия с изоляцией из сшитого полиэтилена имеет либо одну, либо много алюминиевых (медных) жил. Сечение данных жил обычно круглое с классом гибкости равным -2.

Имеется так же экран, состоящий из электропроводящей пероксидносшиваемой полиэтиленовой изоляции, накладываемой на каждые жилы КЛ методом экструзии. После наложения экрана происходит изолирование жил перодсидносшиваемым полиэтиленом. Далее повторяется метод накладывания экрана. И после всего этого на жилу накладывается специальный комбинированный экран, который имеет следующий состав: слой электропроводящей бумаги, повив медных проволок, имеющих спирально наложенные медные ленты. Жилы, которые получились при экранировании, наматываются вокруг специального, состоящего и поливинилхлорида жгута, имеющего пониженный класс пожаробезопасности. В заключительной стадии имеющиеся промежутки, которые образовались между жилами КЛ, заполняют поливинилхлоридным пластиком, с наложением специальной оболочки из поливинилхлоридного пластика. Данные пластики все имеют класс пониженной пожаробезопа сности.

Основные преимущества кабельных линий с изоляцией из сшитого полиэтилена по сравнения с бумажной изоляцией:

1. Более высокая надежность эксплуатации (т.е. нагрузочная способность кабельных линий их ССПЭ выше)

2. Низкая допустимая температура при прокладке

без предварительного подогрева

3. Высокая стойкость к повреждениям

4. Меньший вес, диаметр и радиус изгиба

5. Высокий ток термической устойчи­вости

при коротком замыкании

6. Монтаж и эксплуатация осуществляются без вреда для экологии (отсутствие свинца, масла, битума

Основной недостаток данных КЛ это:

1. Отсутствие методики испытания и серьезный уровень подготовки

2. Высокая стоимость данных КЛ

Рассмотрим существующие методики заводов изготовителей.

Но прежде чем это сделать, вспомним про испытание кабельных линий с бумажной изоляцией. Мы все знаем, что данный вид КЛ испытывается в процессе эксплуатации шестикратным выпрямленным напряжением в течении 5 минут, согласно нормативным документам.

Но данные нормативные документы были созданы достаточно давно. И в современных реалиях полное соблюдение прошлых инструкций просто невыполнимо. Кабельные линии со сроком эксплуатации порядка 20-30 лет просто не выдержат таких испытаний. Поэтому большинство электротехнических лабораторий применяют более щадящий режим испытания. 10-ти киловольтный кабель испытывают 30 кВ постоянным напряжением, в течении 1 минуты. Данных испытаний будет достаточно, чтобы определить надежность кабельной линии.

Данный вид испытаний относился к Кабельным линиям СС бумажно-пропитанной изоляцией. Кабельные линии с изоляцией из сшитого полиэтилена, испытывать постоянным напряжением категорически НЕЛЬЗЯ. Разберем причины.

При испытании КЛ с изоляцией из сшитого полиэтилена повышенным постоянным напряжением происходит накопление объемных зарядов в месте повреждения изоляции.

Электрическое поле во время испытания будет выглядеть вот так:

После завершения испытания электрическое поле будет выглядеть вот так.

Полученные заряды могут стать причиной повреждения изоляции, либо к значительному снижению срока службы.

Делаем вывод, что кабельные линии с изоляцией из сшитого полиэтилена необходимо испытывать переменным напряжением. О тут возникает другой вопрос….

Во многих нормативных документах я читал, что в качестве испытательного напряжение для КЛ применяют переменное с низкой частотой тока 0,1 Гц и как говорят авторы это обусловлено тем, что « ИЗМЕНЕИЕ ПОЛЯРНОСТИ ЗАРЯДА КОМПЕНСИРУЕТ УЖЕ НАКОПЛЕНЫЕ ЗАРЯДЫ, ТЕМ САМЫМ РАЗРЯЖАЯ ИХ». Хочу выразить свое мнение, что действительно данный вид напряжения более эффективен, но мы забываем, что к сверхнизкой частоте нас подталкивает и испытательная установка. Применение переменного напряжения 50 Гц высокой величины в мобильных лабораториях практически невозможно. Данные лаборатории должны быть очень больших размеров. Изготовление таких лабораторий крайне невыгодно. С этой целью и используют переменное напряжение сверхнизкой частоты 0,1 Гц. И сейчас активно производятся мобильные передвижные высоковольтные лаборатории с оборудованием, позволяющим получить напряжение сверхнизкой частоты 0,1 Гц.

Читайте так же:
Как сделать подсветку дома светодиодной лентой с выключателя

Например: ЭТЛ MTGAVAN на базе Мерседеса

1 Инструкция завода-изготовителя «Московский кабельные сети»/ОАО ”ЭЛЕКТРОКАБЕЛЬ ”КОЛЬЧУГИНСКИЙ ЗАВОД”

В инструкциях мы будем рассматривать не все напряжения. Возьмем самое распространенное 10 кВ.

Данная инструкция нам предлагает номинальное напряжение 10 кВ испытывать 18 кВ.

Переменное напряжение сверхнизкой частоты 0,1Гц.

Время испытания инструкция предлагает взять 30 минут.

При проведении испытаний необходимо испытательный провод присоединить к испытательному одной из жил испытательного кабеля. Две остальные жилы и экран кабеля необходимо заземлить с помощью закороток.

Далее проводить испытания с остальными жилами.

Кроме основой изоляции, испытывается еще и оболочка. Данный вид испытания необходим, если кабельная линия проложена в земле. При прохождении кабельной линии в лотках или по кабельной эстакаде, испытывать оболочку не нужно.

Испытывать оболочку необходимо выпрямленным напряжением 10 кВ в течении 1 минуты.

2 Инструкция завода-изготовителя «Энергопрофиль»

Данная инструкция нам предлагает номинальное напряжение 10 кВ испытывать 17,3 кВ.

Переменное напряжение сверхнизкой частоты 0,1Гц.

Время испытания инструкция предлагает взять 45 минут.

Как мы видим существенное различие по сравнению с предыдущей инструкцией во времени испытания. Но так же данная инструкция, почему то разрешает испытывать кабельные линии с изоляцией из сшитого полиэтилена постоянным напряжением четырехкратным в течение 15 минут.

Оболочка испытывается аналогично предыдущей инструкции.

3 Стандарты DIN VDE 0276620 0276-1001 (Германия)

Данный стандарт нам предлагает номинальное напряжение 10 кВ испытывать 30 кВ.

Переменное напряжение сверхнизкой частоты 0,1Гц.

Время испытания инструкция предлагает взять 60 минут.

Здесь мы уже видим что различие по по сравнению с предыдущими инструкциями не только во времени испытания, но и в величине испытательного напряжения. Но и эта инструкция разрешает испытывать кабельные линии с изоляцией из сшитого полиэтилена постоянным напряжением четырехкратным в течение 15 минут.

Оболочка испытывается аналогично предыдущей инструкции.

В заключении хотел бы привести статистические данные.

Статистика СНЧ испытаний показывает, что из 100% случаев пробоя изоляции, 90% приходится на первые полчаса испытания

Остальные 10 % пробоев появляются по причине продолжительности испытаний.

В данной статье было рассказаны и проанализированы методики заводов изготовителей по испытанию КЛ.

При выборе методики испытания кабельных линий с изоляцией из сшито полиэтилена, каждая эксплуатирующая организация руководствуются различными принципами. Не все могут себе позволить иметь электротехническую лабораторию с напряжением СНЧ, поэтому они уже изначально будут применять постоянное напряжение, ухудшая при этом изоляцию.

В нашей лаборатории применяется мобильная установка МЕГА-2 на базе мерседес.

Кабельные линии с изоляцией из сшитого полиэтилена мы испытываем согласно нормам Стандарты DIN VDE 0276620 0276-1001 (Германия)

Хотел бы пожелать всем специалистам, работающим в данной области, руководствоваться, прежде всего, здравым смыслом, а потом уже нормативными документами.

Испытания изоляции повышенным напряжением

Испытанию изоляции повышенным напряжением должны предшествовать тщательный осмотр и оценка состояния изоляции другими методами, описанными ранее. Изоляция может быть подвергнута испытанию повышенным напряжением только при положительных результатах предшествующих проверок.

Изоляция считается выдержавшей испытание повышенным напряжением в том случае, если не было пробоев, частичных разрядов, выделений газа или дыма, резкого снижения напряжения и возрастания тока через изоляцию, местного нагрева изоляции.

В зависимости от вида оборудования и характера испытания изоляция может быть испытана приложением повышенного напряжения переменного тока или выпрямленного напряжения. В тех случаях, когда испытание изоляции производится как переменным, так и выпрямленным напряжением, испытание выпрямленным напряжением должно предшествовать испытанию переменным напряжением.

Испытание изоляции повышенным напряжением переменного тока

В качестве испытательного напряжения используется обычно напряжение промышленной частоты. Время приложения испытательного напряжения принято равным 1 мин для главной изоляции и 5 мин для межвитковой. Такая продолжительность приложения испытательного напряжения не сказывается на состоянии изоляции, не имеющей дефектов, и достаточна для осмотра находящейся под напряжением изоляции.

Скорость повышения напряжения до одной трети испытательного значения может быть произвольной, в дальнейшем испытательное напряжение следует повышать плавно, со скоростью, допускающей визуальный отсчет на измерительных приборах. При испытании изоляции электрических машин время повышения напряжения от половинного до полного значения должно быть не менее 10 с.

После установленной продолжительности испытания напряжение плавно снижается до значения, не превышающего одной трети испытательного, и отключается. Резкое снятие напряжения допускается в тех случаях, когда это необходимо для безопасности людей или сохранности оборудования. Под продолжительностью испытания подразумевается время приложения полного испытательного напряжения.

Для предотвращения недопустимых перенапряжений при испытаниях (из-за высших гармоник в кривой испытательного напряжения) испытательная установка должна быть по возможности включена на линейное напряжение сети. Форму кривой напряжения можно контролировать электронным осциллографом.

Читайте так же:
Дистанционные двухканальные выключатели света

Испытательное напряжение, за исключением ответственных испытаний (генераторов, крупных двигателей и т. д.), измеряют на стороне низкого напряжения. При испытании объектов с большой емкостью напряжение на высокой стороне испытательного трансформатора может несколько превышать расчетное по коэффициенту трансформации за счет емкостного тока.

При ответственных испытаниях испытательное напряжение измеряют на высокой стороне испытательного трансформатора с помощью трансформаторов напряжения или электростатических киловольтметров.

В тех случаях, когда одного трансформатора напряжения для измерения испытательного напряжения недостаточно, допускается последовательное соединение двух однотипных трансформаторов напряжения. Применяют также дополнительные сопротивления к вольтметрам.

Для защиты ответственных объектов от случайного опасного повышения напряжения параллельно испытываемому объекту должны быть включены через сопротивление (2 — 5 Ом на каждый вольт испытательного напряжения) шаровые разрядники с пробивным напряжением, равным 110 % испытательного.

Схема испытания изоляции электрооборудования повышенным напряжением переменного тока приведена на рис. 1.

Рис. 1. Схема испытания изоляции повышенным напряжением переменного тока.

Перед подачей напряжения на испытываемый объект полностью собранную схему опробуют вхолостую и проверяют напряжение пробоя шаровых разрядников.

В качестве испытательных трансформаторов, кроме специальных, можно использовать силовые трансформаторы и трансформаторы напряжения.

Силовые трансформаторы при таком использовании допускают нагрузку по току до 250 % номинальной при трехкратном (пофазном) испытании с двухминутным перерывом между приложениями напряжения. Для трансформаторов напряжения типа НОМ допустимо повышение напряжения на первичной обмотке до 150 — 170 % номинального. При отсутствии испытательного трансформатора достаточной мощности возможно параллельное включение однотипных трансформаторов.

Испытание изоляции выпрямленным напряжением

Применение выпрямленного испытательного напряжения позволяет значительно уменьшить мощность испытательной установки, делает возможным испытание объектов с большой емкостью (кабелей конденсаторов и др.), позволяет контролировать состояние изоляции по измеряемым токам утечки.

При испытании изоляции выпрямленным напряжением, как правило, применяются схемы однополупериодного выпрямления. На рис. 2 приведена принципиальная схема испытания изоляции выпрямленным напряжением.

Рис. 2. Схема испытания изоляции выпрямленным напряжением

Методика испытания изоляции выпрямленным напряжением аналогична методике при испытаниях переменным напряжением. Дополнительно ведется контроль за током утечки.

Время приложения выпрямленного напряжения более продолжительно, чем при испытании переменным напряжением, и в зависимости от испытываемого оборудования установлено нормами в пределах 10 — 15 мин.

Измерение испытательного напряжения, как правило, осуществляется с помощью вольтметра, включенного на стороне низкого напряжения испытательного трансформатора (с пересчетом по коэффициенту трансформации).

Поскольку выпрямленное напряжение определяется амплитудным значением, показания вольтметра (измеряющего эффективные значения напряжения) необходимо умножить на внутреннее сопротивление, выпрямительной лампы, небольшое при нормальном накале катода резко возрастает при недостаточном токе накала. При этом падение напряжения в выпрямительной лампе увеличивается, а на испытываемом объекте уменьшается. Поэтому при испытаниях необходимо следить за напряжением питания испытательной установки. Целесообразно также применение вольтметра с большим добавочным сопротивлением для измерения напряжений на высокой стороне.

Как и при испытаниях переменным напряжением, в целях защиты ответственных объектов от случайного чрезмерного повышения напряжения рекомендуется параллельно испытываемому объекту включить через сопротивление (2 — 5 Ом на каждый вольт испытательного напряжения) разрядник с пробивным напряжением, равным 110 — 120 % испытательного.

Ток, проходящий через изоляцию при испытаниях выпрямленным напряжением, в большинстве случаев не превышает 5 — 10 мА, что обусловливает небольшую мощность испытательного трансформатора.

При испытаниях объектов с большой емкостью (силовые кабели, конденсаторы, обмотки крупных электрических машин) заряженная до испытательного напряжения емкость объекта имеет большой запас энергии, мгновенный разряд которой может привести к разрушению аппаратуры испытательной установки. Поэтому разряжать испытываемый объект следует так, чтобы разрядный ток не проходил через измерительный прибор.

Для снятия заряда с испытываемых объектов используются заземляющие штанги, в электрическую цепь которых включается сопротивление 5 — 50 кОм. В качестве разрядных сопротивлений для объектов, обладающих большой емкостью, применяют наполненные водой резиновые трубки.

Заряд емкости даже после кратковременного наложения заземления может сохраняться длительно и представлять опасность для жизни персонала. Поэтому после того как испытываемый объект разряжен с помощью разрядного устройства, он должен быть наглухо заземлен.

Сопротивление изоляции кабеля.

Приступая к измерению сопротивления изоляции кабеля важно учесть температурные показатели окружающей среды. Почему так?

Это связано с тем, что при минусовой температуре в кабельной массе молекулы воды будут находиться в замерзшем состоянии, фактически в виде льда. А как известно лед является диэлектриком и не проводит ток.

Так что при определении сопротивления изоляции при минусовой температуры именно эти частички замерзшей воды не будут обнаружены.

Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника.

Приборы и средства измерения сопротивления изоляции кабеля.

Следующим пунктом при проведении измерения сопротивления изоляции кабельных линий, будут сами измерительные приборы.

Наиболее популярным прибором для измерения сопротивления изоляции у работников нашей электролаборатории является прибор MIC-2500.

Сопротивление изоляции кабеля.

С помощью этого прибора произведенного фирмой Sonel можно не только снять замеры показателей сопротивления кабельных линий, шнуров, проводов, электрооборудования (трансформаторы, выключатели, двигатели и т.п), но и определить замер уровня изношенности и уровня увлажненности изоляции.

Читайте так же:
Как работает выключатель двойной света

Стоит отметить, что именно прибор MIC-2500 включен в государственный реестр разрешенных для измерения сопротивления изоляции.

Согласно инструкциям прибор MIC-2500 должен проходить ежегодную государственную поверку. После процедуры поверки на прибор наносят голограмму и штамп, которые подтверждают прохождение поверки. В штампе указывается информация о дате плановой поверки и серийный номер измерительного прибора.

Сопротивление изоляции кабеля.

К работе с измерениями сопротивления изоляции допускаются только исправные и поверенные приборы.

Нормы сопротивления изоляции для различных кабелей.

Для определения норма сопротивления изоляции кабелей, нужно провести их классификацию. Кабели по функциональному назначению разделяются на:

  • выше 1000 (В) — высоковольтные силовые
  • ниже 1000 (В) — низковольтные силовые
  • контрольные кабели — (цепи защиты и автоматики, вторичные цепи РУ, цепи управления, цепи питания электроприводов выключателей, отделителей, короткозамыкателей и т.п.)

Измерение сопротивления изоляции, как для высоковольтных кабелей, так и для низковольтных кабелей осуществляется мегаомметром на напряжение 2500 (В). А контрольные кабели измеряются при напряжении 500-2500 (В).

Каждый кабель имеет свои нормы сопротивления изоляции. Согласно ПТЭЭП и ПУЭ.

Высоковольтные силовые кабели выше 1000 (В) — сопротивление изоляции должно достигать показателя не ниже 10 (МОм)

Низковольтные силовые кабели ниже 1000 (В) — сопротивление изоляции не должно достигать отметки ниже 0,5 (МОм)

Контрольные кабели — сопротивление изоляции не должно опускаться ниже 1 (МОм)

Алгоритм измерения сопротивления изоляции высоковольтных силовых кабелей.

Чтобы понять и упростить процесс выполнения работ по измерению сопротивления изоляции в высоковольтных силовых кабелях, рекомендуем порядок действий при замерах.

1. Проверяем отсутствие напряжения на кабеле при помощи указателя высокого напряжения

2. Ставим испытательное заземление с использованием специальных зажимов ка кабельные жилы с той стороны, где будем проводить измерение.

Сопротивление изоляции кабеля.

3. На другой стороне кабеля оставляем свободные жилы, при этом разводим их на достаточное расстояние друг от друга.

4. Размещаем предупреждающие информационные плакаты. Желательно поставить на другой стороне человека для наблюдения за безопасностью во время измерения мегаомметром.

Сопротивление изоляции кабеля.

5. Каждую жилу измеряем 1 минуту мегаомметром на 2500 (В) для получения показателей сопротивления изоляции силового кабеля.

Например, замеряем сопротивление изоляции на жиле фазы «С». При этом помещаем заземление на жилы фаз «В» и «А». Один конец мегаомметра подключаем к заземлению, или проще сказать к «земле». Второй конец — к жиле фазы «С».

Наглядно это выглядит так:

Сопротивление изоляции кабеля.

6. Данные измерений в процессе работы записываем в блокнот.

Методика измерения сопротивления изоляции низковольтных силовых кабелей.

Что касается измерения изоляции низковольтных силовых кабелей, то методика измерения незначительно отличается от описанной выше.

1. Проверяем отсутствие напряжения на кабеле с помощью защитных средств, предназначенных для работ в электроустановках.

2. С другой стороны кабеля, жилы разводим их на достаточное расстояние друг от друга и оставляем свободными.

3. Размещаем запрещающие и предупреждающие плакаты. Оставляем с другой стороны человека для наблюдения за безопасностью.

4. Измерение сопротивления изоляции низковольтного силового кабеля проводим мегаомметром на 2500 (В) по 1 минуте:

  • между фазными жилами (А-В, В-С, А-С)
  • между фазными жилами и нулем (А-N, В-N, С-N)
  • между фазными жилами и землей (А-РЕ, В-РЕ, С-РЕ), если кабель пятижильный
  • между нулем и землей (N-PE), предварительно отключив ноль от нулевой шинки

Сопротивление изоляции кабеля.

6. Полученные показатели измерений сопротивления изоляции фиксируем в блокноте.

Методика измерения сопротивления изоляции контрольных кабелей.

Сопротивление изоляции кабеля.

Особенностью измерения сопротивления изоляции контрольных кабелей является то, что жилы кабеля можно не отсоединять от схемы и делать замеры вместе с электрооборудованием.

Измерение сопротивления изоляции контрольного кабеля выполняется по уже знакомому алгоритму.

1. Проверяем отсутствие напряжения на кабеле с помощью защитных средств, которые предназначены для работ в электроустановках.

2. Измеряем сопротивления изоляции контрольного кабеля мегаомметром на 500-2500 (В) в такой последовательности.

Сначала совершаем подключение одного вывода мегаомметра к испытуемой жиле. Остальные жилы контрольного кабеля соединяем между собой и на землю. Ко второй выводу мегаомметра подключаем либо землю, либо любую другую не испытуемую жилу.

Сопротивление изоляции кабеля.

1 минуту производим замер испытуемой жилы. Потом эту жилу возвращаем к остальным жилам кабеля и поочередно измеряем каждую жилу.

3. Все полученные показатели измерения сопротивления изоляции контрольного кабеля фиксируем в блокнот.

Протокол измерения сопротивления изоляции кабеля.

Все вышеперечисленные электрические измерения, после получения данных сопротивления изоляции кабеля необходимо подвергнуть сравнительному анализу с требованиями и нормами ПУЭ и ПТЭЭП. На основании сравнения необходимо сформулировать вывод-заключение о пригодности кабеля к последующей эксплуатации и составить протокол измерения сопротивления изоляции.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector