Ikea73.ru

IKEA Стиль
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Подключение светодиодов через стабилизатор тока

Подключение светодиодов через стабилизатор тока

Главным электрическим параметром светодиодов (LED) является их рабочий ток. Когда в таблице характеристик светодиода мы встречаем рабочее напряжение, то нужно понимать, что речь идет о падении напряжения на светодиоде при протекании рабочего тока. То есть рабочий ток определяет рабочее напряжение LED. Поэтому только стабилизатор тока для светодиодов может обеспечить их надежную работу.

Назначение и принцип работы

Стабилизаторы должны обеспечивать постоянный рабочий ток светодиодов когда в сети питания есть проблемы с отклонением напряжения от нормы (вам будет интересно узнать, как подключить светодиод от сети 220 вольт). Стабильный рабочий ток в первую очередь необходим для защиты LED от перегрева. Ведь при превышении максимально допустимого тока, светодиоды выходят из строя. Также стабильность рабочего тока обеспечивает постоянство светового потока прибора, например, при разряде аккумуляторных батарей или колебаниях напряжения в питающей сети.

Стабилизаторы тока для светодиодов имеют разные виды исполнения, а обилие вариантов схем исполнения радует глаз. На рисунке приведены три самые популярные схемы стабилизаторов на полупроводниках.

схемы стабилизаторов тока для светодиодов

  1. Схема а) — Параметрический стабилизатор. В этой схеме стабилитрон задает постоянное напряжение на базе транзистора, который включен по схеме эмиттерного повторителя. Благодаря стабильности напряжения на базе транзистора, напряжение на резисторе R тоже постоянно. В силу закона Ома ток на резисторе также не меняется. Так как ток резистора равен току эмиттера, то стабильны токи эмиттера и коллектора транзистора. Включая нагрузку в цепь коллектора, мы получим стабилизированный ток.
  2. Схема б). В схеме, напряжение на резисторе R стабилизируется следующим образом. При увеличении падения напряжения на R, больше открывается первый транзистор. Это приводит к уменьшению тока базы второго транзистора. Второй транзистор немного закрывается и напряжение на R стабилизируется.
  3. Схема в). В третьей схеме ток стабилизации определяется начальным током полевого транзистора. Он не зависит от напряжения, приложенного между стоком и истоком.

В схемах а) и б) ток стабилизации определяется номиналом резистора R. Применяя вместо постоянного резистора подстрочный можно регулировать выходной ток стабилизаторов.

Производители электронных компонентов производят множество микросхем стабилизаторов для светодиодов. Поэтому в настоящее время в промышленных изделиях и в радиолюбительских конструкциях чаще применяются стабилизаторы в интегральном исполнении.

Обзор известных моделей

Большинство микросхем для питания светодиодов выполнены в виде импульсных преобразователей напряжения. Преобразователи, в которых роль накопителя электрической энергии выполняет катушка индуктивности (дроссель) называются бустерами. В бустерах преобразование напряжения происходит за счет явления самоиндукции. Одна из типичных схем бустера приведена на рисунке.

импульсный стабилизатор тока светодиода

Схема стабилизатора тока работает следующим образом. Транзисторный ключ находящийся внутри микросхемы периодически замыкает дроссель на общий провод. В момент размыкания ключа в дросселе возникает ЭДС самоиндукции, которая выпрямляется диодом. Характерно то, что ЭДС самоиндукции может значительно превышать напряжение источника питания.

Как видно из схемы для изготовления бустера на TPS61160 производства фирмы Texas Instruments требуется совсем немного компонентов. Главными навесными деталями являются дроссель L1, диод Шоттки D1, выпрямляющий импульсное напряжение на выходе преобразователя, и Rset.

Резистор выполняет две функции. Во-первых, резистор ограничивает ток, протекающий через светодиоды, а во-вторых, резистор служит элементом обратной связи (своего рода датчиком). С него снимается измерительное напряжение, и внутренние схемы чипа стабилизируют ток, протекающий через LED, на заданном уровне. Изменяя номинал резистора можно изменять ток светодиодов.

Преобразователь на TPS61160 работает на частоте 1.2 МГц, максимальный выходной ток может составлять 1.2 А. С помощью микросхемы можно питать до десяти светодиодов включенных последовательно. Яркость светодиодов можно изменять путем подачи на вход «контроль яркости» сигнала ШИМ переменной скважности. КПД приведенной схемы составляет около 80%.

Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания. В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке.

стабилизатор тока для светодиода на схеме maxim

Как видно из структурной схемы, стабилизация тока светодиодов осуществляется Р-канальным полевым транзистором. Напряжение ошибки снимается с резистора Rsensи подается на схему управления полевиком. Так как полевой транзистор работает в линейном режиме, КПД подобных схем заметно ниже, чем у схем импульсных преобразователей.

Микросхемы линейки MAX16xxx часто применяются в автомобильных приложениях. Максимальное входное напряжение чипов составляет 40 В, выходной ток – 350 мА. Они, как и импульсные стабилизаторы, допускают ШИМ-диммирование.

Стабилизатор на LM317

В качестве стабилизатора тока для светодиодов можно использовать не только специализированные микросхемы. Большой популярностью у радиолюбителей пользуется схема LM317.

LM317 представляет собой классический линейный стабилизатор напряжения имеющий множество аналогов. В нашей стране эта микросхема известна как КР142ЕН12А. Типовая схема включения LM317 в качестве стабилизатора напряжения показана на рисунке.

схема стабилизатора для светодиодов на микросхеме lm317

Для превращения этой схемы в стабилизатор тока достаточно исключить из схемы резистор R1. Включение LM317 в качестве линейного стабилизатора тока выглядит следующим образом.

Читайте так же:
Выключатель головного света форд фокус 2

линейный стабилизатор тока на микросхеме LM317

Выполнить расчет этого стабилизатора довольно просто. Достаточно вычислить номинал резистора R1, подставив значение тока в следующую формулу:

Мощность, рассеиваемая на резисторе равна:

Регулируемый стабилизатор

Предыдущую схему легко превратить в регулируемый стабилизатор. Для этого нужно постоянный резистор R1 заменить на потенциометр. Схема будет выглядеть так:

регулируемый стабилизатор тока для светодиодов

Как сделать стабилизатор для светодиода своими руками

Во всех приведенных схемах стабилизаторов используется минимальное количество деталей. Поэтому самостоятельно собрать подобные конструкции сможет даже начинающий радиолюбитель освоивший навыки работы с паяльником. Особенно просты конструкции на LM317. Для их изготовления даже не нужно разрабатывать печатную плату. Достаточно припаять подходящий резистор между опорным выводом микросхемы и ее выходом.

Также к входу и выходу микросхемы нужно припаять два гибких проводника и конструкция будет готова. В случае, если с помощью стабилизатора тока на LM317 предполагается питать мощный светодиод, микросхему нужно оснастить радиатором который обеспечит отвод тепла. В качестве радиатора можно использовать небольшую алюминиевую пластинку площадью 15-20 квадратных сантиметров.

Изготавливая конструкции бустеров, в качестве дросселей можно использовать катушки фильтров различных блоков питания. Например, для этих целей хорошо подойдут ферритовые кольца от блоков питания компьютеров, на которые следует намотать несколько десятков витков эмалированного провода диаметром 0.3 мм.

Какой стабилизатор использовать в авто

Сейчас автолюбители часто занимаются модернизацией светотехники своих машин, применяя для этих целей светодиоды или светодиодные ленты . Известно, что напряжение бортовой сети автомобиля может сильно меняться в зависимости от режима работы двигателя и генератора. Поэтому в случае с авто особенно важно применять не стабилизатор 12 вольт, а рассчитанный на конкретный тип светодиодов.

Для автомобиля можно посоветовать конструкции на основе LM317. Также можно использовать одну из модификаций линейного стабилизатора на двух транзисторах, в которой в качестве силового элемента использован мощный N-канальный полевой транзистор. Ниже приведены варианты подобных схем, в том числе и схема светодиодного драйвера.

схема стабилизатора тока на 1 и 3 ампера

схема мощного стабилизатора тока

Вывод

Подводя итог можно сказать, что для надежной работы светодиодных конструкций их необходимо питать с помощью стабилизаторов тока. Многие схемы стабилизаторов просты и доступны для изготовления своими руками. Мы надеемся, что приведенные в материале сведения будут полезны всем, кто интересуется данной темой.

Импульсные стабилизаторы тока HV9921-HV9923 для светодиодов

Трёхвыводные импульсные стабилизаторы тока HV9921, HV9922, HV9923 производства фирмы Supertex.inc предназначены для питания светодиодов стабилизированным током 20, 50 и 30 мА соответственно в условиях изменения напряжения источника питания в весьма широких пределах — от 20 до 400 В [1—4]. В частности, таким источником может служить выпрямительный мост, на который подано напряжение сети, причём применение конденсатора, сглаживающего пульсации выпрямленного напряжения, необязательно. Регулирование тока через светодиоды не предусмотрено.

Использование этих микросхем позволяет предельно упростить сетевой блок питания светодиодов.
Вместо светодиодов к стабилизатору тока можно подключить стабилитрон и тем самым получить простой импульсный понижающий преобразователь напряжения. В зависимости от тока нагрузки КПД стабилизатора может достигать 80 % и более. Такой источник хорошо подойдёт для питания узлов управления мощными высоковольтными коммутирующими электронными приборами (транзисторами, тиристорами и др.).

Стабилизаторы HV9921— HV9923 выпускают в миниатюрных пластмассовых корпусах ТО-92 (рис. 1; с штампованными жёсткими лужёными выводами, для традиционного монтажа) и SOT-89 (рис. 2; для поверхностного монтажа). К обозначению микросхемы в корпусе ТО-92 добавлены символы N3 (например, HV9921N3), а в корпусе SOT-89 — N8(HV9921N8).

Если к обозначению прибора через дефис добавлена буква G (от Green), это означает, что он не содержит свинца. От наличия или отсутствия этого индекса электрические параметры приборов не зависят.
К теплоотводящему фланцу (вывод 4) микросхемы в корпусе SOT-89 не следует подключать токоведущие цепи и детали.

Упрощённая функциональная схема прибора представлена на рис. 3, а его цоколёвка — в табл. 1.

Рис. 3. Функциональная схема прибора

Таблица 1

Номер выводаОбозначениеФункциональное назначение
1DRAINПлюсовой вывод питания; сток переключательного транзистора
2GNDОбщий вывод; минусовый вывод питания
3VDDВывод для подключения блокировочного конденсатора

Таблица 2.

Значение токаВыходной стабилизированный ток микросхемы, мА
HV9921HV9922HV9923
Номинальное205030
Минимальное18,54928,2
Максимальное25,56338,2

Классификационный параметр микросхем рассматриваемой группы — выходной стабилизированный ток — указан в табл. 2. Микросхемы стабилизируют не среднее значение тока через светодиоды, как микросхема МР2481 [5], а максимальное. Среднее значение тока оказывается немного меньше из-за пульсаций, о чём будет подробно рассказано ниже.

Основные технические характеристики

Предельно допустимые значения

Напряжение на выводе 3 относительно вывода 2, В-0,3. +10
Максимальный ток внешней нагрузки, подключаемой к выводам 3 и 2, мА5
Максимальная рассеиваемая мощность, Вт, при температуре окружающей среды 25 °С
для микросхемы в корпусе ТО-920,74
для микросхемы в корпусе SOT-891,6
Рабочий интервал температуры окружающей среды, °С-40. +85
Температура кристалла, °С-40. +125
Температура хранения, °С-65. +150

Стабилизатор тока содержит устройство управления, RS-триггер DD1, управляющий выходным транзистором VT1, с буферным усилителем сигнала DA2, элемент временной задержки DT1, компаратор напряжения DA1, источник образцового напряжения G1, резистор R1 — датчик тока истока выходного транзистора, управляемый электронный выключатель SA1 и встроенный стабилизатор DA3 с выходным напряжением 7,5 В, обеспечивающий питание всех узлов прибора.

Читайте так же:
Длительно допустимый ток кабеля кгэш

Рис. 4. Типовая схема включения HV9922

Типовая схема включения стабилизатора тока показана на рис. 4. Питаемые от стабилизатора светодиоды EL1 — ELN соединяют последовательно. Для работы стабилизатора необходим накопительный дроссель L1 и диод /01 с малым временем восстановления обратного сопротивления tr.

После подачи напряжения питания его значение анализирует устройство управления. Если напряжение находится в допустимых пределах, устройство управления устанавливает RS-триггер DD1 в состояние высокого уровня на выходе, в результате чего выходной транзистор VT1 открывается. Начинается зарядка паразитной ёмкости дросселя L1, диода VD1 и самого транзистора током его насыщения Iнас. завершающаяся через короткое время tс.

На время tBLANK=300 мс устройство управления размыкает «контакты» электронного выключателя SA1, разрывая цепь ОС с резистором R1 — датчиком тока через канал транзистора VT1. За это время должны завершиться зарядка паразитной ёмкости и другие переходные процессы (такие, в частности, как восстановление обратного сопротивления диода VD1).

После зарядки паразитной ёмкости начинается этап накопления энергии в дросселе. Ток lL через него линейно увеличивается, как показывает упрощённый график на рис. 5 (lc — ток стока транзистора VT1; lL — ток через дроссель L1; ton + toff — период следования импульсов тока).

Рис. 5

По истечении временного интервала tBLANK замыкаются «контакты» выключателя SA1, восстанавливающие цепь ОС резистора R1 с неинвертирующим входом компаратора DA1.
Когда напряжение на датчике тока — резисторе R1 — превысит образцовое напряжение источника G1, компаратор переключится в состояние с высоким уровнем на выходе и переведёт RS-триггер в состояние низкого уровня на прямом выходе. В результате выходной транзистор закроется.

После этого открывается внешний диод VD1 (см. схему на рис. 4) и продолжается питание нагрузки (светодиодов EL1— ELN) энергией, накопленной дросселем L1. Ток через дроссель линейно уменьшается, но не до нуля, а на глубину пульсаций ΔI.

Если не разомкнуть на время tBLANK цепь ОС, то транзистор VT1 будет выключен не током дросселя, а током через паразитную ёмкость, в результате чего дроссель не сможет за период работы стабилизатора накопить энергию, необходимую для питания светодиодов.

После закрывания выходного транзистора сигнал с инверсного выхода триггера поступит на вход элемента временной задержки DT1, а через фиксированный отрезок времени toff — на верхний по схеме вход S триггера. В результате триггер вернётся в исходное состояние и транзистор вновь откроется.
Микросхема стабилизирует максимальный ток через дроссель на уровне Imax. Средний ток через светодиоды равен:

Размах пульсаций ΔI фирма—производитель микросхем рекомендует устанавливать не превышающим 30 % от Imax:

Индуктивность L1 дросселя выбирают исходя из формулы

где UCB — суммарное падение напряжения на светодиодах EL1—ELN; tOFF — длительность закрытого состояния выходного транзистора микросхемы, равная 10,5 мкс.

Например, для стабилизатора тока HV9922 Imax=50 мА, ΔI=0,3Imax=15 мА. Пусть Uсв = 30 В, тогда по формуле (3) L1≈20мГн.

Индуктивность дросселя не должна быть меньше расчётной, но и чрезмерно увеличивать её не следует, так как большей индуктивности дросселя сопутствует его большая собственная ёмкость.
По истечении временного интервала tOFF выходной транзистор стабилизатора тока снова открывается, начиная очередной интервал tBLANK минимальная продолжительность которого равна 200 нc. Первые 50 нc уходят на восстановление обратного сопротивления внешнего диода VD1. На зарядку паразитной ёмкости остаётся 150 нc.

Пусть напряжение питания стабилизатора Uпит = 300 В, а минимальный ток насыщения выходного транзистора Uнас мин = 100 мА. Тогда за 150 нс он сообщит заряд Q = 15нКл, отсюда следует, что общая паразитная ёмкость не превышает

Из них 8 пФ — ёмкость диода VD1, 1 пф — ёмкость транзистора, учтём также ёмкость монтажа. Поэтому собственная ёмкость дросселя L1 в этом примере не должна превысить 30 пф.

Для промышленно изготавливаемых катушек вместо собственной ёмкости обычно в справочниках указывают собственную резонансную частоту f, по которой легко вычислить собственную ёмкость С по известной формуле

где L— номинальная индуктивность.

Если дроссель самодельный или его частота собственного резонанса неизвестна, желательно её измерить хотя бы с помощью гетеродинного индикатора резонанса (ГИР) или иных приборов.
В общем случае паразитная ёмкость Сп должна удовлетворять [7] неравенству

Если светодиоды выдерживают перегрузку током Iнас в течение времени tBLANK max = 400 мс, то конденсатор С1 (см. рис. 4) можно не устанавливать. Однако он не только предотвращает перегрузку светодиодов (поскольку импульсы зарядки паразитной ёмкости протекают через него, а не через нагрузку), но и устраняет влияние индуктивности проводов светодиодной цепи, а также паразитное излучение ими электромагнитных колебаний (антенный эффект). Поэтому во всех практических случаях конденсатор С1 удалять не следует.

На этом период работы стабилизатора тока завершён. В следующем периоде все процессы повторяются. В каждом периоде происходит зарядка паразитной ёмкости Сп до напряжения питания Uпит, а также переключение диода VD1 током Iнас из открытого состояния в закрытое в течение времени t,.

Читайте так же:
Как переместить выключатель света

Поэтому мощность, рассеиваемая транзистором при переключении Psw, равна [3]

где fs — частота колебаний, которую можно вычислить по формуле

где η, — КПД стабилизатора тока, который в расчётах фирма—производитель микросхем рекомендует принимать равным 0,7. Подставляя (7) в (6), получим

Сопротивление канала открытого выходного транзистора r0N не равно нулю. Когда транзистор открыт, на нём рассеивается мощность I 2 выхrON а когда закрыт, микросхема потребляет от источника питания ток Iпот, рассеиваемая мощность равна Iпот Uпот Зная коэффициент заполнения D коммутирующих импульсов, получим формулу для расчёта рассеиваемой мощности

В качестве Iвых в формулу подставляют средний ток через светодиоды, вычисленный по формуле (1). Для упрощения расчётов вместо среднего тока можно подставить максимальный Iвых max. так как рассеиваемую мощность лучше рассчитать с избытком.

Коэффициент заполнения коммутирующих импульсов D рассчитывают по формуле

Общая рассеиваемая микросхемой мощность равна сумме значений, рассчитанных по формулам (8) и (9):

Если к выводам VDD и GND подключена нагрузка, то потребляемый ею ток складывается с током, потребляемым микросхемой. Это необходимо учесть в формуле (9).

Следует отметить, что выходное напряжение UCB не может быть близко к нулю. Минимальная длительность tON может достигать 0,65 мкс, a tOFF — 8 мкс. Отсюда следует, что минимальное значение D

Подставив (12) в (10), получим

Говоря иначе, нельзя требовать от стабилизатора понижения напряжения более чем в 20 раз от максимального. Например, при напряжении питания 300 В падение напряжения на цепи светодиодов должно превышать 15 В. Фирма—производитель рассматривавмых микросхем рекомендует выбирать максимальное выходное напряжение на уровне 80 % от напряжения питания [1]. Кроме этого, если разность Uпит — Uвых будет менее 20 В, устройство управления закроет транзистор VT1, решив, что напряжение питания микросхемы недостаточно.

Устройство, собранное по схеме на рис. 4, может быть использовано в качестве источника стабильного напряжения, снимаемого с цепи светодиодов или любой её части. Светодиоды можно также заменить стабилитронами, включёнными в обратной полярности (катодом к плюсовому выводу источника питания). Такой источник питания вырабатывает стабилизированное напряжение на выходе относительно плюсового провода высоковольтного питания.

На практике может потребоваться источник, соединённый с минусовым проводом питания. Для этого случая, соблюдая полярность, меняют местами микросхему и остальные элементы, т. е. включают двухполюсник VD1L1C1EL1—ELN в разрыв провода от вывода 2 микросхемы (показано на рис. 4 крестом). Конденсатор С2 оставляют подключённым к выводам 2 и 3. Заменив светодиоды стабилитроном на необходимое напряжение, получают понижающий преобразователь напряжения с высоким КПД и общим минусовым проводом.

Заметим, что у такого источника питания выходное напряжение не может быть меньше вычисленного по формуле (13) значения. Есть у него и недостаток — по той же причине он не выдерживает замыкания цепи нагрузки, поскольку при этом выходное напряжение становится равным нулю, что противоречит формуле (13).

Для преодоления этого недостатка фирма—производитель рекомендует включить последовательно с дросселем резистор [6], подобранный так, чтобы падение напряжения на нём превысило вычисленное по формуле (13). Этот резистор, однако, делает форму тока через дроссель не линейной, а близкой к экспоненциальной, что существенно усложняет расчёты.

Как самостоятельно сделать простой стабилизатор тока для светодиодов своими руками?

В настоящее время трудно представить тюнинг автомобиля без светодиодных ламп. Но порой их установка осложнена тем, что они перегорают. Чтобы избежать этой ситуации, в сеть можно включить стабилизатор тока для светодиодов своими руками. В статье приводятся примеры микросхем, по которым можно его сделать.

Схемы стабилизаторов и регуляторов тока

Всем известно, что светодиодным лампочкам необходимо питание двенадцать вольт. В сети авто это значение может доходить до 15 В. Светодиодные элементы очень чувствительны, на них такие скачки отражаются отрицательно. Светодиодные лампы могут перегореть либо некачественно светить (мигать, терять яркость и т.д.).

Чтобы светодиоды служили дольше, в электросеть автомобиля включаются драйвера (резисторы). При нестабильности в сети устанавливаются устройства, которые поддерживают постоянное значение. Существует несколько простых микросхем, по которым можно сделать стабилизатор напряжения своими руками. Все компоненты, входящие в цепь, можно приобрести в специализированных магазинах. Обладая начальными знаниями по электротехнике сделать приборы будет несложно.

На КРЕНке

Для того, чтобы сконструировать простейший стабилизатор напряжения 12 вольт своими руками, понадобится микросхема с потреблением 12 В. В этом случае подойдет регулируемый стабилизатор напряжения 12 В LM317. Он может функционировать в электросети, где входной параметр составляет до 40 В. Чтобы прибор стабильно работал, необходимого обеспечивать охлаждение.

Крены для микросхем

Крены для микросхем

Стабилизатор тока на LM317требует для работы небольшой ток до 8 мА, и данное значение обычно остается неизменным, даже при большом токе, протекающем через крен LM317, или при изменении входного значения. Это реализуется с помощью компоненты R3.

Можно применять элемент R2, но пределы при этом будут небольшими. При неизменном сопротивлении LM317 ток, идущий через прибор, будет также стабильным (автор видео — Создано в Гараже).

Читайте так же:
Автоматические выключатели света для квартир

Входное значение для кренки LM317 может составлять до 8 мА и выше. Пользуясь этой микросхемой, можно придумать стабилизатор тока для ДХО. Это устройство может выступать нагрузкой в бортовой сети или источником электричества при подзарядке аккумуляторной батареи. Сделать простой стабилизатор напряжения LM317 не составляет труда.

На двух транзисторах

На сегодняшний момент пользуются популярностью стабилизирующие устройства для бортовой сети машины на 12 В, разработанные с использованием двух транзисторов. Данную микросхему используют как стабилизатор напряжения для ДХО.

Резистор R2 является токораздающим элементом. При возрастании тока в сети увеличивается напряжение. Если оно достигает значения от 0,5 до 0,6 В, открывается элемент VT1. Открытие компонента VT1 закрывает элемент VT2. В итоге, ток, проходящий через VT2, начинает снижаться. Можно вместе с VT2 применять полевой транзистор Мосфет.

Элемент VD1 включается в цепь, когда значения находится в пределах от 8 до 15 В и настолько велики, что транзистор может выйти из строя. При мощном транзисторе допустимы показания в бортовой сети около 20 В. Не стоит забывать о том, что транзистор Мосфет откроется, если показания на затворе будут 2 В.

Если применять универсальный выпрямитель как зарядку для АКБ или других задач, то достаточно использовать резистора R1 и транзистор.

На операционном усилителе (на ОУ)

Стабилизатор напряжения для светодиодов на основе ОУ собирается при необходимости создания устройства, которое будет работать в расширенном диапазоне. В рассматриваемом случае в качестве элемента, который будет задавать выпрямляемый ток, является R7. С помощью операционного усилителя DA2.2 можно увеличить уровень напряжения в токозадающем компоненте. Задачей компонента DA 2.1 является контроль опорного напряжения.

При создании схемы следует учесть, что она рассчитана на 3А, поэтому необходим больший ток, который должен поступать на разъем ХР2. Кроме того, следует обеспечивать работоспособность всех составляющих данного устройства.

Сделанный стабилизирующий прибор для автомобиля должен иметь генератор, роль которого выполняет REF198. Чтобы правильно настроить прибор, ползунок резистора R1 нужно установить в верхнее положение, а резистором R3 задавать необходимое значение выпрямленного тока 3А. Для погашения возможных возбуждений, используются элементы R,2 R4 и C2.

На микросхеме импульсного стабилизатора

Если выпрямитель для автомобиля должен обеспечивать высокий КПД в сети, целесообразно использовать импульсные компоненты, создавая импульсный стабилизатор напряжения. Популярной является схема МАХ771.

Схема выпрямителя с импульсным выпрямителем

Схема выпрямителя с импульсным выпрямителем

Импульсный стабилизатор тока характеризуется выходной мощностью 15 Вт. Элементы R1 и R2 делят показатели схемы на выходе. Если делимое напряжение превышает по показателям опорное, выпрямитель автоматически уменьшает выходное значение. В противном случае устройство будет увеличивать выходной параметр.

Сборка данного устройства целесообразна, если уровень превышает 16 В. Компоненты R3 являются токовыми. Для устранения высокого падения нагрузки на данном резисторе в схему следует включить ОУ.

Заключение

Нами были рассмотрены стабилизаторы напряжения на различных компонентах. Эти схемы можно усложнять, повышая быстродействие, улучшая другие показатели. Можно использовать готовые микросхемы, которые всегда можно усовершенствовать своими руками, создавая устройства, предназначенные для выполнения конкретных задач.

Фотогалерея «Микросхемы для самодельных выпрямителей»

Прибор на КРЕНке 1. Прибор на КРЕНке На двух транзисторах 2. На двух транзисторах С операционным усилителем 3. С операционным усилителем

Разработка микросхем для светодиодов в авто – трудоемкое и сложное дело, которое требует специальных знаний и опыта. При их отсутствии трудно будет достичь необходимого результата.

Но опыт можно приобрести, внимательно собирая несложный стабилизатор тока для светодиодов согласно приведенным схемам. Его можно использовать для дневных ходовых огней в своем автомобиле с установленными светодиодными лампами.

Видео «Выпрямитель для светодиодов своими руками»

Видео о том, как изготовить устройство, которое защитит светодиоды от перегорания (автор ролика — Яков TANK_OFF).

PicHobby.lg.ua

В статье расскажу, как сделать простой стабилизатор тока для светодиодов на полевом транзисторе.

Описание задумки.

Задолго до разработки фонарика на ATtiny13 мне уже доводилось работать со сверх-яркими светодиодами. И что могу сказать. Редкий радиолюбитель жаждет чтобы светодиоды перегорали, как можно чаще! :). Особенно мощные и дорогие. Вот и мне этого не хотелось и решил взяться за разработку стабилизатора тока.

Немного теории.

Мне часто задают один и тот же вопрос, мол почему именно стабилизатор тока лучше для светодиодов, а не стабилизатор напряжения. Ответ простой, но он многим не нравиться. Постараюсь пояснить на вольт-амперной характеристики(ВАХ) SMD светодиода типоразмера 3528, рисунок 1.

Вольт-амперная характеристика(ВАХ) SMD светодиода типоразмера 3528

Рисунок 1 – Вольт-амперная характеристика(ВАХ) SMD светодиода типоразмера 3528 при 25⁰С.

Ось У – ток через светодиод.

Ось Х – падение напряжения на светодиоде.

Теперь внимание! Заявленный производителем ток для данного светодиода равен 20мА. Смотрим на рисунок и видим, что ток 20 мА приблизительно соответствует напряжению на светодиоде 3,4В. Если поднять напряжение на светодиоде до 3,5В, а это всего лишь на 0,1В больше чем его типовое напряжение, то ток увеличиться до 50мА, а это в 2,5 раза больше чем его заявленный ток. Если всё перевести в процентное соотношение, то получиться что ток возрастает в 2,5 раза, при увеличении напряжения всего лишь на 3%(округлил). Вот почему стабилизатор напряжения должен быть практически идеальным!

Читайте так же:
Мигает сенсорный выключатель света

Теперь рассмотрим стабилизатор тока. Если стабилизировать ток 20мА, то увеличение тока на 3% даст результат – 20,6мА. Согласитесь, что это совсем другой результат и он куда лучше предыдущего!

Иногда мне пытаются доказать, что последовательное соединение светодиодов + стабилизатор напряжения лучше, чем параллельное + стабилизатор тока. Это, конечно, тема для отдельной статьи, но хочу тут немного пояснить, что параллельное соединение однозначно выигрывает.

Для примера возьмём пять светодиодов 20мА, 3,4В и соединим их последовательно и параллельно. При последовательном соединении если один светодиод перегорает и остаётся замкнутым, а такое бывает и часто, напряжение 17В(3,4В*5шт) делится между оставшимися четырьмя светодиодами в равных пропорциях (предположим что так). Получается, что падение напряжение на каждом светодиоде будет — 4,25В (17В/4шт). Ток при этом возрастает до неимоверных значений, а это приводит к последовательному перегоранию оставшихся светодиодов или части из них.

При параллельном соединении и стабилизации тока в 100мА(20мА*5шт) перегорание светодиода приведёт к увеличению тока на оставшихся всего на 5мА(20мА/4шт). Или по-другому: 100мА/4шт = 25мА – ток на каждом светодиоде. Разница очевидна! В этой статье не буду больше приводить плюсы и минусы каждого из решений, статья совсем о другом. Надеюсь пример был понятным. Мой личный выбор всегда на стороне параллельного соединения светодиодов и стабилизатора тока для них. Если и ваш тоже, то читайте дальше, как сделать несложный стабилизатор тока для светодиодов.

О схеме.

Принципиальная схема стабилизатора тока на полевом транзисторе показана на рисунке 2.

Стабилизатор тока на полевом транзисторе схема

Резистор R1 нужен для того чтобы транзистор VT2 открывался. Стабилитрон VD1 защищает затвор от перенапряжения, для транзистора P0903BDG максимальное напряжение затвор-сток – 20В. Если у вас другой транзистор, то информацию на него смотрите в даташите. Параметр этот называется Gate-Source Voltage. Если напряжение питание значительно меньше максимального напряжения затвор-сток, то можно вообще стабилитрон не ставить. Резисторы R2-R6 выполняют роль шунта. На схему добавил их побольше чтобы можно было удобно подобрать нужный номинал.

Схема работает следующим образом. В начальный момент времени транзистор VT2 открыт, ток протекает через светодиоды и шунт из резисторов R2-R6, транзистор VT1 закрыт. При протекании тока через шунт на нём падает определённое напряжение и если оно равняется напряжению открытия транзистора VT1, то он открывается и «садит» затвор транзистора VT2 на минус питания, транзистор VT2 закрывается и ток через светодиоды и шунт начинает снижаться. При снижении тока через светодиоды будет снижаться падение напряжение и на шунте, как только напряжение станет меньше чем нужно для открытия транзистора VT1, он закроется и «освободит» затвор транзистора VT2. Транзистор VT2 снова откроется и ток устремиться к светодиодам и шунту. Дальше все повторяется по кругу.

Настройка.

Настройка схемы заключается в определении необходимого тока для светодиодов и подбору номиналов резисторов шунта. Приблизительно считаю, что падение напряжение на шунте должно быть около 0,5В. Этого напряжения достаточно для открытия транзистора VT1. Хотя по даташиту напряжение база-эмиттер для транзистора BC846 – 0,66В, для отечественных – 0,7В.

В качестве примера рассчитаю для вас номиналы резисторов шунта на ток 170мА.

Сопротивление шунта(Ом) = падение напряжение на шунте(В) / ток через шунт (А), получается: Сопротивление шунта = 0,5В / 0,17А = 2,94 Ом. Полученный результат округляю до 3 Ом. Из стандартного ряда можно взять два резистора номиналом 1 Ом и 2 Ом и впаять их на плату, как R2, R3. Резисторы R4-R6 при этом исключаются из схемы.

Дальше нужно проверить какой ток стабилизирует стабилизатор. Для проверки потребуется амперметр или миллиамперметр. Прибор нужно подключить в разрыв любого из проводов питания, подать питающее напряжение, оно, кстати, должно быть больше чем типовое питание светодиодов. Лучше использовать источник питания с возможностью регулировки выходного напряжения. Подключаем, регулируем, смотрим.

В определённый момент времени ток через стабилизатор перестанет меняться – это и будет током стабилизации. Дальнейшее увеличение напряжения ничего не изменит, разве что добавит разогрев транзистора VT2. Нужно понимать, что всё избыточное напряжение будет выделяться на транзисторе VT2 в качестве тепла. Если ток стабилизации получился таким какой нужен значит подбор шунта закончен, если же ток отличается от нужного значения в большую сторону – увеличиваем сопротивление шунта, в меньшую – уменьшаем.

О печатной плате.

Печатную плату разрабатывал под SMD компоненты в программе P-CAD 2006. Размеры платы – 37×18мм, рисунок 3. Вы можете разработать свою печатную плату и прислать мне файл для размещения на сайте.

Печатная плата стабилизатора тока на полевом транзисторе

О деталях.

Перечень деталей, необходимых для сборки стабилизатора тока, свёл в таблицу 1.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector