Ikea73.ru

IKEA Стиль
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как увеличить яркость светодиодной лампы

Как увеличить яркость светодиодной лампы

В магазине бывает очень сложно определиться с выбором светодиодной лампы, вроде они все похожи друг с другом, разница только в мощности и в типе колбы. Но, вот здесь и существует особенности, ведь можно подобрать такую колбу, с помощью которой можно будет увеличить яркость светодиодной лампы. Как бы это не звучало, но без особых усилий вы сможете сделать так, что ваша LED будет светить гораздо ярче. Однако здесь есть множество особенностей, их стоит брать в учет.

Что такое яркость светодиода и в чем она измеряется

Яркостью свечения называют показатель света, равный соотношению силы светового потока к косинусу угла, под которым он излучается, и освещаемой площади. Другое определение – освещенность в точке, перпендикулярной к источнику, к углу, в который заключен луч. Яркость свечения обозначается буквой «L», измеряется в милликанделах на метр в минус второй степени (кд*м-2). У обычных светодиодов яркость 20-50 мкд, у сверхярких – до 20 000 мкд. От этого показателя зависит восприятие предметов глазами человека.

Если говорить о светодиодах, то у них яркость свечения – это мощность (сила) света, измеряемая в ваттах и зависящая от угла конуса, основание которого расположено на освещаемой площади, вершина – в источнике света. При равном излучении во всех направлениях яркость свечения будет соотношением потока к пространственному углу (в градусах). Чаще всего градусы переводятся в стерадианы: sr = 2 π (1 – cos θ/2), где θ – угол луча.

Когда можно увеличить мощность LED

В следующих случаях вы можете без опасения снимать колбу. Но, обращайте свое внимание, на лампу в этом случае не должна попадать влага. Также читайте: Лампы Jazzway и Philips сравнение.

    Лампы, которые устанавливаются в подъезде. Можно смело добавлять яркости, особенно при использовании Китайских ламп.

Обратите внимание, если установить лампу в матовом плафоне – вы потеряете 40% яркости, ее лучше снимать.

Параметры, влияющие на яркость

Насколько ярко будет отображаться освещаемый объект, зависит не только от светового потока. Яркость свечения зависит так же от плотности луча и чувствительности наблюдателя.

Сила тока

Во время работы сила тока на светодиоде зависит от напряжения. При незначительном увеличении вольтажа электроток повышается многократно, вместе с ним и яркость свечения. Но этим параметром можно управлять, если включить в схему аналоговый или широко-импульсный модулятор, обеспечивающий функцию диммирования.

Регулятор яркость светодиодной ленты своими руками

Здесь описываются схемы трех устройств для регулировки яркости освещения с помощью светодиодных лент.


Схема первого устройства показана на рисунке 1. Оно предназначено для регулировки яркости одной светодиодной ленты, питающейся постоянным напряжением 12V.

Это схема, подающая ток на светодиодную ленту импульсами, причем, яркость свечения ленты зависит от скважности этих импульсов, которая в очень широких переделах регулируется переменным резистором R1.

Схема выполнена на микросхеме D1 типа 74АС14, которая содержит шесть инверторов – триггеров Шмитта. На трех из них сделан мультивибратор, с буферным каскадом и регулировкой скважности импульсов с помощью резистора R1. На транзисторе VT1 выполнен транзисторный ключ, через который ток поступает на светодиодную ленту.

Микросхема D1 питается напряжением 5V через параметрический стабилизатор на резисторе R2 и стабилитроне VD3. В схеме на рис.1 остаются «лишние» еще три логических элемента микросхемы D1. Это позволяет сделать еще один регулятор, чтобы регулировать им яркость свечения еще одной светодиодной ленты.


Что актуально для случая, когда в системе освещения используются две ленты с разной «температурой света» или с разным расположением в пространстве. Такая схема, на две светодиодные ленты, показана на рис.2. В ней мультивибратор, генерирующий импульсы для питания второй ленты выполнен на трех других элементах ИМС D1. Регулировка скважности производится переменным резистором R3.

Имеется второй транзисторный ключ на транзисторе VT2. Переменным резистором R1 регулируется яркость свечения первой светодиодной ленты, а переменным резистором R3 регулируется яркость свечения второй светодиодной ленты. Если использовать ленты с «разной температурой» и расположить их рядом, то этими переменными резисторами можно будет регулировать не только общую яркость, но и оттенок освещения белого света.

Большой популярностью пользуются трехцветные RGB-светодиодные ленты, потому что с их помощью можно получить практически любой цвет освещения, регулируя соотношение яркости светодиодов разных цветов. В схемах на рисунках 1 и 2 в мультивибраторах работало по три логических элемента микросхемы. Хотя собственно мультивибратор выполнен всего на одном логическом элементе.


В схеме на рисунке 1 это логический элемент, вход которого выходит на вывод 1, а выход на вывод 2. Два других элемента, – они только включены последовательно этому. Так как на роль буфера можно вполне оставить только один элемент, то остается еще два лишних элемента, на которых можно сделать еще один мультивибратор и таким образом организовать управление еще одной цепью.

Теперь будет уже три цепи регулировки. И можно будет управлять трехцветной RGB-лентой. Такая схема показана на рисунке 3. Здесь третьим органом управления является переменный резистор R4. Мультивибратор выполнен на элементе, вход которого выведен на вывод 9, а выход на вывод 8. Буфером служит мультивибратор на выводах 5 и 6.

Еще одно отличие схемы на рисунке 3 в том, что здесь в каждом канале на один инвертор меньше, поэтому полярность выходных импульсов противоположная. Значит, и меняется направление регулировки. То есть, где в схеме на рис.1 или рис.2 был максимум, в схеме на рис.3 будет минимум и наоборот. Это, в общем- то, на удобство никак не влияет, просто при монтаже нужно противоположно распаять крайние выводы переменных резисторов.

Читайте так же:
Микросхема ocp8128 уменьшить ток подсветки

Способы регулировки яркости

Зная, что яркость свечения любого светодиода зависит от тока, можно сделать логический вывод, что характеристики луча меняются одновременно с увеличением или уменьшением подаваемых на кристалл ампер. При аналоговом регулировании резисторами интенсивность свечения регулируется ступенчато, поэтому в схему необходимо включить стабилизатор LM317, фиксирующий ток и напряжение. Такой способ регулирования используется в транспортных средствах и при подключении светодиодов к источнику постоянного напряжения.

Лучшим способом считается широтно-импульсной модуляции с включением в схему резистора и контроллера (если диоды цветные). На светодиод подаются импульсы определенной частоты, то есть, питание включается и выключается очень быстро, светодиод открывается каждый раз, но глаза это не улавливают.

Важно! Интенсивность свечения ламп с цоколем на основе светодиодов нельзя регулировать, если они не специальные (на упаковке возможность диммирования не указана). Для обычных ламп используется балластный блок питания на основе конденсаторов.

Сегодня мы постараемся сделать контроллер, который будет регулировать яркость светодиода. Материалы для данного теста были взяты с сайта led22.ru из статьи «Светодиоды для авто своими руками».

Сегодня мы постараемся сделать контроллер, который будет регулировать яркость светодиода. Материалы для данного теста были взяты с сайта led22.ru из статьи «Светодиоды для авто своими руками». 2 основные детали, используемые в даннном эксперименте — стабилизатор тока LM317 и переменный резистор. Их можно увидеть на фотографии ниже. Отличие нашего эксперимента от приведенного в оригинальной статье — мы так и оcтавили переменный резистор для регулироваки света светодиода. В магазине радиодеталей (не самом дешевом, но всем очень известном) мы приобрели данные детали за 120 рублей (стабилизатор — 30р, резистор — 90р). Здесь хочется отметить, что резистор российского производства «тембр», обладающий максимальным сопротивлением в 1кОм.

Изменение яркости светодиодов или Контроллер своими руками

Схема подключения: на правую ножку стабилизатора тока LM317 подается «плюс» от блока питания 12V. К левой и средней ножкам поключается резистор переменного тока. Так же, к левой ножке подключается плюсовая ножка светодиода. Минусовой провод от блока питания подключается к минусовой ножке светодиода.

Получается, что ток, проходя через Lm317, уменьшается до величины, заданной сопротивлением переменного резистора.

На практике решено было припаять стабилизатор прямо на резистор. Сделано это в первую очередь для отведения тепла от стабилизатора. Теперь он будет нагреваться вместе с резистором. На резисторе у нас расположено 3 контакта. Мы используем центральный и крайний. Какой имеено крайний использовать — для нас не важно. В зависимости от выбора, в одном случае при повороте ручки по часовой стрелке яркость будет увеличиваться, в противоположном случае — уменьшаться. Если подключить крайние контакты, сопротивление будет постоянно 1 кОм.

Изменение яркости светодиодов или Контроллер своими руками

Припаиваем провода, как на схеме. К коричневому проводу будет подходить «плюс» от блока питания, синий — «плюс» к светодиоду. При пайке специально оставляем побольше олова, чтобы была лучше теплопередача.

Изменение яркости светодиодов или Контроллер своими руками

И напоследок одеваем термоусадку, чтобы исключить возможность короткого замыкания. Теперь можно пробовать.

Изменение яркости светодиодов или Контроллер своими руками

Для первого теста мы используем светодиоды:

1) Epistar 1W, рабочее напряжение — 4V (в нижней части следующей фотографии).

2) Плоский диод с тремя чипами, рабочее напряжение — 9V (в верхней части следующей фотографии).

Изменение яркости светодиодов или Контроллер своими руками

Результаты (можно увидеть в следующем ролике) не могут не радовать: ни один диод не сгорел, яркость регулируется плавно от минимума до максимума. Для питания полупроводника основное значение имеет ток питания, а не напряжение (ток растет экспоненциально относительно напряжения, при повышении напряжения резко повышается вероятность «сжечь» светодиод.

После чего проводится тест со светодиодными модулями на 12V. И на них наш контроллер отрабатывает без проблем. Именно этого мы и добивались.

Спасибо за внимание!

Основные выводы

Измерить интенсивность свечения светодиода в домашних условиях невозможно. Этот показатель редко указывается в маркировке, для правильного выбора необходимо знать его зависимость от размеров кристалла, потока света и угла излучения.

Возможность менять яркость (использовать диммирование) широко используется в быту для экономии электроэнергии и устройства специальных систем освещения. Интенсивность свечения можно уменьшить при просмотре телевизионных программ, во время отдыха, для ночного освещения детских комнат. Удобство использования повышает возможность управления диммированием при помощи пульта управления или автоматически (с учетом движения и времени).

Светодиодное освещение: проблема деградации светодиодов


О регулировке силы света традиционной лампочки накаливания знают многие. Но яркостью светодиода тоже можно управлять. Для этого в схему электроприбора устанавливаются широко-импульсные модуляторы или аналоговые регуляторы. Принято говорить, что такие светильники имеют опцию диммирования.
Многим потребителям до недавнего времени не приходилось задумываться над вопросом, от чего зависит яркость свечения, так как единственным параметром обычной лампочки накаливания считалась лишь потребляемая мощность, указываемая в ваттах. Новые технологии дали миру совершенно иные представления о светотехнике, существенно расширили характеристики ламп, прописываемые в их маркировке, на упаковке или потребительском ярлыке, размещенном непосредственно на изделии. Интенсивность освещения, в сегодняшнем представлении, зависит не только от напряжения в электросети, но и от других, не всем понятных обозначений. К тому же, регулятор яркости светодиодов позволяет управлять опцией, выставляя уровень освещенности по своему усмотрению, что важно в вопросе экономии электроэнергии.

Параметры яркости свечения светодиодов

Потребителей нередко интересует, в чем измеряется яркость светодиодной лампы и по каким цифрам и обозначениям на ее упаковочной коробке определяется данный параметр. На ней указываются:

  • канделы (cd);
  • люмены (лм или lm);
  • две цифры потребляемой мощности (W и Watt);
  • угол освещения;
  • цветовая температура.

Именно по этим характеристикам можно узнать яркость светодиодов в лампе. В канделах обозначают силу света, или поверхностную плотность потока. За единицу здесь принято считать его интенсивность в процессе горения одной свечи.

Читайте так же:
Беспроводные выключатели уличные выключатели света

Параметр мощности света в люменах принимает во внимание и силу, и длину воспринимаемой человеческим глазом волны, и угол освещения. От последнего, не менее важного показателя зависит площадь зоны освещения, схема расположения и количество требуемых ламп. Если сравнивать изделия с углами освещения в 60 и 30 градусов, то при одинаковых характеристиках можно наверняка сказать, что первое окажется раза в 3-4 эффективнее второго.

Яркость светодиода зависит от вида установленной в лампу линзы. Матовая даст более мягкий и рассеянный свет. При этом, угол освещения наверняка будет шире, а световые потоки слабее.

И, наконец, классификация по мощности. На самом деле, для уровня яркости светодиодных лампочек этот показатель определяющим не является. Его указывают для облегчения расчетов потребления электроэнергии и для понимания данного параметра большинством среднестатистических потребителей. Две цифры, к примеру измерение в ваттах 5,5W и 35 Watt, означают, что потребляемая мощность лампы составляет 5,5Вт, а светит она как обычная 35Вт-ная лампочка накаливания. Все достаточно просто, но следует понимать, что данное соотношение является довольно-таки приблизительным, и светодиоды повышенной яркости исключением не являются.

Светодиодные электроприборы относятся к энергосберегающим изделиям, а управление яркостью излучения помогает потребителю еще больше экономить на электричестве в бытовых и промышленных условиях.

Цветовая температура влияет на цветовой диапазон светодиода. Он может смещаться:

  • по мере возрастного старения элементов;
  • при изменении показателей подводимого тока.

Холодное сине-зеленое свечение присуще источникам света, имеющим высокую цветотемпературу. А теплый свет красно-желтых оттенков – низкую. Часто на этикетках указывают длину световой волны в доминирующих значениях. Ее смещение происходит в зависимости от цветовой температуры.

Нарушение основных этапов сборки

В гонке за клиентами, среди большой конкуренции, китайские компании-производители не особо следят и контролируют процесс сборки устройства. Это послужило возникновению еще одной причины деградации светодиодов — из-за некачественной сборки осветительных приборов. В этом случае компании-производители работают по простому принципу – главное не качество, а количество. И как результат, светодиодная лампа служит потребителям намного меньше, чем указано в технических характеристиках LED ламп.

Однако сложно определить, почему светодиод плохо работает и ухудшает свои свойства, какие факторы на это влияют. Деградация может быть различной.

Диод помещается в корпус, у которого характеристики и свойства значительно уступают по качеству. Однако такая светодиодная лампа полностью соответствует всем техническим характеристикам, поэтому изначально считается годной. Ее яркость, цветовая температура, напряжение и прочие параметры соответствуют данным, что прописаны в спецификации производителя. А так как закупочная цена у таких осветительных элементов низкая и доступная, то их закупают многие импортеры. Однако срок службы у таких источников света на порядок меньше того срока, что указан в паспорте и составляет всего лишь несколько сотен часов вместо нескольких тысяч. Этот факт подтвердился в ходе испытаний и эксплуатации компонентов.

Улучшить эффективность диодов и соответственно отдалить процесс их деградации можно несколькими вариантами. Например, повысить качество используемого материала, модифицировать структуру и построение самого чипа, а также технологию его образования. Также при тестировании поверхности можно добиться эффективности в качественной работе LED компонентов.

Способы регулировки яркости

Управлять световыми потоками в светодиодных электроприборах без изменения цвета свечения позволяет присутствие в схеме:

  • широтно-импульсной модуляции – обозначение ШИМ;
  • аналогового регулирования.

Оба варианта управления яркостью светодиода поддерживают заданный уровень проходящего через элементы тока. Увеличить или снизить яркость светодиодов при наличии в схеме ШИМ диммера, можно с более высоким КПД и незаметным для глаз человека мерцанием светового потока. Дело в том, что для аналогового регулятора яркости свойственно изменение амплитуд подходящего к светодиодам тока, а для ШИМ имеется в виду плавная регулировка ширины, или длительности импульсов.

Работа вышеприведенной схемы допускается в диапазоне 4,5-18 вольт. При этом повысить яркость свечения можно с 5 до 95%. Подобный вариант применяется как для отдельных мощных светодиодов, так и для ленточных электросветовых приборов.

ШИМ регуляторы управляют процессом мгновенного включения-отключения тока. Причем делается это с высокой частотой – более 200Гц. Максимальная же цифра измеряется несколькими килогерцами. Такое мерцание человеческие глаза не воспринимают.

Аналоговое увеличение или снижение светового потока предполагает поддержание тока, подходящего к светодиоду на постоянном уровне, или изменение подаваемого на импульсный драйвер напряжения. Оба варианта приемлемы, но нередко результатом диммирования становится изменение цвета свечения диодов в лампе. Если это в определенных эксплуатационных условиях является недопустимым, то от аналогового регулирования яркости света лучше отказаться.

На рынке встречаются многорежимные диммеры, способные осуществлять регулировку яркости светодиодов в ШИМ и аналоговом варианте управления мощностью свечения.

Деградация кристалла

Напомним, что светодиод белого свечения, как правило, представляет собой кристалл, излучающий синий цвет, который покрыт люминофором. Благодаря суммированию собственного излучения кристалла с индуцированным им излучением люминофора получается свет, воспринимаемый зрением, как белый. Применительно к светодиодом надо различать температуру, измеренную в разных точках: TB — монтажная плата, TS — подложка, TJ — p-n-переход, TA — окружающая среда (рис. 2).

Рис. 2. Температура светодиода, измеренная в разных точках

Деградация кристалла приводит к снижению мощности излучения. Одна из причин — рост количества дефектов кристаллической решетки. Области кристалла, где появились дефекты, не излучают свет, но при этом генерируют тепло.

Другая причина — электрическая миграция материала, из которого сделаны электроды, приваренные к кристаллу. В кристалл проникают атомы металлов, из которых сделаны электроды, и нарушают кристаллическую структуру.

Читайте так же:
Беспроводные выключатели света с пультом дистанционного управления

При деградации кристалла возрастает ток утечки, то есть значительная часть тока начинает проходить не через те участки кристалла, которые излучают свет. В результате уменьшается напряжение на электродах светодиода, а значит, уменьшается мощность. Деградация кристалла проявляет себя также снижением напряжения на светодиоде. Эта особенность используется для автоматического отключения вышедшего из строя светодиода.

Следует различать максимальную рабочую температуру светодиода и максимально допустимую температуру p-n-перехода (если очень упростить ситуацию, то речь идет о температуре внутри кристалла). Срок службы светодиода определяется температурой p-n-перехода. Но поскольку эту температуру можно измерить только в лабораторных условиях с применением сложных и дорогостоящих методов, при проектировании используются математические методы, позволяющие связать ее с температурой в тех или иных точках корпуса светодиода.

Скорость деградации светодиода значительно увеличивается при повышении силы тока свыше номинального значения, а также при повышении температуры. По мнению некоторых специалистов к возникновению дефектов в кристаллической решетке может привести действие статического электричества, поэтому рекомендуется осуществлять монтаж светодиодов с соблюдением стандартных мер по защите от статического электричества.

Зачем нужно регулировать яркость

Любая сравнительная таблица наглядно показывает взаимосвязь потребления электроэнергии от яркости свечения лампы. Диммер дает реальную возможность экономии, так как позволяет снизить интенсивность светового потока, к примеру в комнате, где в данный момент семья смотрит телевизор, или увеличить освещение во время приема гостей за столом.

Многие малыши боятся темноты, а престарелые люди плохо ориентируются при выключенном свете. И в том, и в другом случае пригодится опция диммирования. Но она должна присутствовать не в общем выключателе, а в схеме светодиодного электроприбора.

В период вечернего отдыха свет можно сделать мягче. Тогда как при необходимости выполнения какой-либо работы – увеличить освещение до требуемого максимума. Следует отметить, что некоторые модели светильников комплектуются дистанционным или автоматическим управлением, учитывающим временные промежутки или факт передвижения объекта в поле охвата специально устанавливаемого датчика.

Сила тока

Производители обещают и гарантируют то, что светодиод способен проработать до ста тысяч часов хорошей работы (в среднем 50 000), с тем учетом, что ток его будет составлять 20 мА. Однако производители из Китая предпочитают устанавливать в диод чип, который применяется для подсветки экрана в мобильном телефоне. В таких оптоэлектронных приборах светодиод рассчитан на ток до 5 мА. За счет этого продукция выпускается по заниженной стоимости и как результат — недобросовестная победа среди конкурентов, так как светодиод со временем станет работать хуже, начнет деградировать, .

Качество драйверов

Основная и самая распространенная причина деградации светодиодов, некачественное использование чипов. Большинство производителей в погоне за прибылью, используют при производстве дешевую технологию. Применяя кристаллы, которые изготовлены с помощью однотипной технологии первого поколения, а именно копии Nichia, делая прозрачным p-контакт. При изготовлении пренебрегают правилами технологических процессов, используя некачественное оборудование.

В итоге использование таких ламп не рекомендовано.

Ошибки при сборке устройства, приводящие к деградации:

  1. Не контролируется процесс сборки устройства.
  2. Используются дешевые материалы.
  3. Используются не качественные материалы.
  4. Принцип не качество, а количество.
  5. Неправильная эксплуатация.

Остается только понять, почему светодиод не выполняет качественно свою функцию. Деградация и ее проявления различны.

При помещении диода в корпус изначально его характеристики и основные составляющие не надлежащего качества. Внешне такая лампа ничем не отличается от качественных, у нее такие же изначальные характеристики, поэтому она на рынке представлена покупателю. Значительное отличие такой лампы — это срок годности и качество работы.

Поднять работоспособность лампы можно повысив качество материала, пройти все процессы при изготовлении под контролем согласно правилам. Перед продажей провести тестирование на соответствие качества. Помните о том, что сделать светодиодную лампу своими руками можно, также ее можно собрать из нескольких.

Особенности включения светодиодов InGaN

Совсем недавно цветовая гамма светодиодов была ограничена красным и зеленым спектрами. Затем на рынке появились синие светодиоды. Их изобретение дало толчок к производству «однокристальных белых» светодиодов, состоящих из желтого люминофора в сочетании с синим кристаллом. В большинстве белых и синих светодиодов в качестве эпитаксиального слоя был использован нитрид индия и галлия (InGaN). Длина волны (координаты цветности) данных светодиодов демонстрирует сильную зависимость от рабочего тока, и эту отличительную особенность следует учитывать при использовании светодиодов на основе InGaN.

Белые светодиоды на основе InGaN

Для получения белого свечения синий кристалл (с длиной волны от 450нм до 470 нм) покрывают люминофором, который под действием белого свечения излучает желтый свет. Человеческий глаз распознает смесь синего и желтого света как белый. Из-за того, что данная смесь не может быть описана как просто преобладающая длина волны (т.к. в спектре две наивысшие точки, см. рис. 1) должны быть использованы координаты цвета. Значения координат x и y находятся по CIE (издание 15.2).

Спектр белого светодиода

Рис. 1. Сплошная линия — спектр белого светодиода,
пунктирная — кривая стандартного восприятия глаза

Координаты белого цвета светодиода на диаграмме CIE

Рис. 2. Координаты белого цвета светодиода
на диаграмме CIE

Двумя факторами, оказывающими основное влияние на цветовые координаты полученного белого света, являются:

  • длина волны синего кристалла;
  • концентрация преобразующего вещества.

Следовательно, если один или оба из этих параметров меняются, координаты цвета меняются соотносительно.

На рисунке 2 показана область внутри диаграммы CIE, в рамах которой обычно варьируются координаты белого светодиода. После изготовления на заводе для уменьшения проблемы различия белого свечения, светодиоды сортируются по бинам. Помимо производственной особенностей, на координаты цвета белого света также может влиять условия ,при которых используется светодиод. Из-за того, что длина волны синего чипа светодиодов InGaN меняется вместе с прямым током (см. рис. 3), меняется и координаты цветности.

Читайте так же:
Выключатель ближнего света уаз патриот

Сдвиг координат цветности

Рис. 3. Сдвиг координат цветности

Зависимость силы света от тока через диоды

Рис. 4. Зависимость силы света от тока через диоды

Параллельное соединение нескольких светодиодов InGaN

Кроме того, что после изготовления светодиоды имеют различную силу света и цветовые координаты, они еще имеют и различное рабочее напряжение. Параллельное соединение несортированных по прямому напряжению светодиодов приведет к работе светодиодов на различных токах. Это может привести к заметной разнице в яркости, а также сдвигу координат цветности отдельных светодиодов.

На рис.4 показаны кривые зависимости силы света от прямого напряжения для взятых в случайном порядке белых светодиодов.

Прямое напряжение 3.3V (см. пунктирную линию на 3.3 V) всех этих светодиодов в параллельной цепи ведет к разнице прямого тока от 2 до 5мА. В устройствах, работающих при низком напряжении в параллельных цепях, некоторые светодиоды могут почти совсем потускнеть. Например, см. вторую пунктирную линию на 2.95V на рис. 4, где прямой ток варьируется от 0,1 до 1мА. Это значит, что яркость светодиодов может отличаться более чем в 10 раз! Подобная разница в яркости будет заметна в любом устройстве с несколькими светодиодами. Очевидно, что использование этих полупроводников в параллельных цепях крайне нежелательно.

Во избежание ухода координат цветности, или заметных изменений яркости рекомендуется применять светодиоды InGaN с последовательным включением, и в сочетании с интегральными драйверами.

Изменение яркости светодиодов при работе в группе

При проектировании схемы управления группой светодиодов может возникнуть необходимость диммирования проектируемого светильника. Мы попробуем описать поведение светодиодов , а именно изменение яркости, при варьировании тока, и предложим решения для улучшения работы устройства.

Светодиоды на заводе сортируются по силе света при определенной силе тока. Если нам необходимо использовать группу светодиодов в одном светильнике, то безусловно нам нужно стремиться к одинаковой силе света каждого диода в группе. А это возможно только на токе, при котором проходила сортировка светодиодов. Этот ток можно назвать «групповым».

Когда возникает необходимость корректирования яркости светодиодов?

  1. Если яркость группы светодиодов при заданном токе не отвечает необходимым параметрам проектируемого светильника, и возникает необходимость изменить групповой ток в ту или иную сторону.
  2. Если используются светодиоды с различными бинами по яркости.
  3. Если требуется диммирование яркости.

Диаграммы яркости светодиодов

Каждый светодиод имеет специфическую зависимость яркости от силы тока . В зависимости от строения кристалла эта зависимость более или менее предсказуема. На рисунке 5 показана зависимость яркости для двух светодиодов с одинаковыми чипами и одинаковой силой света при токе 20mA. При изменении силы тока яркость светодиодов меняется по-разному. Данный эффект объясняется незначительной разницой P-N переходов, вызванной производственными особенностями при эпитаксиальном выращивании. Чем дальше от группового тока, тем сильнее отличается яркость светодиодов.

Зависимость силы света от тока через диоды

Рис. 5. Зависимость силы света от тока через диоды

Разница в силе света двух светодиодов

Рис. 6. Разница в силе света двух светодиодов

На рис. 6 показано максимальное значение разницы Ivmax / Ivmin в зависимости от силы тока двух светодиодов с одинаковым строением чипа и одинаковой яркостью при групповом токе (здесь 20мА). Это соотношение характерно для подавляющей части производимых светодиодов в целом. Грубо говоря, данное соотношение Ivmax / Ivmin должно быть менее 1.6. Для токов, сильно отличающихся от группового, это соотношение становится полностью неприемлемым , как это показано пунктиром.

В целом, довольно рискованно использовать светодиод при силе тока, отличающейся от группового тока.

Зависимость рабочего тока диода от температуры окружающей среды

В российских условиях необходимо учитывать еще один параметр светодиода- зависимость вольтамперной характеристики светодиода от температуры окружающей среды. Рассмотрим теоретический случай, когда белый светодиод установлен в устройстве, работающем при морозе 30 градусов, и питается от источника постоянного напряжения с применением балластного резистора.

Коэффициент зависимости рабочего напряжения от температуры -4,0 мВ/°C. При изменении температуры окружающей среды от +25 градусов до -30 рабочее напряжение светодиода уменьшится на 0,22 вольта. При питании через балластный резистор ток через светодиод увеличится с 20 до 30 мА, что может привести к отказу светодиода из-за деградации P-N перехода, и из за отрыва токовода от кристалла в результате теплового удара (разницы температур между холодным корпусом и горячим кристаллом). При работе в условиях больших морозов настоятельно рекомендуется применять режим плавного пуска светодиода.

Зависимость рабочего тока от прямого напряжения

Рис. 6. Зависимость рабочего тока от прямого напряжения

Рекомендации для проектирования

Если необходимо получить наилучшую однородность свечения, в качестве решения можно взять два различных варианта. Простейшим является использование светодиодов на токах, близким к групповым-, т.е. на токах, при которые происходит сортировка на заводе. Однако, если потребуется изменять яркость светодиодов или невозможно использовать ток близкий к групповому, тогда альтернативным решением будет использование ШИМ.

Во этом случае прямой ток IF остается постоянной величиной (близкой к значению группового), а меняется только скважность, или отношение длительности импульса к частоте сигнала. Рекомендованная частота включения-выключения светодиода 1кГц, при такой высокой частоте человеческий глаз не воспринимает отдельные световые импульсы. Глаз интегрирует импульсы света и распознает их как изменение яркости при различной скважности.

Во всех случаях рекомендуется использования интегрального или дискретного стабилизатора тока, и настоятельно не рекомендуется использование балластных резисторов для установки рабочего тока.

Как увеличить яркость светодиодной лампы: разбираем со всех сторон

В магазине бывает очень сложно определиться с выбором светодиодной лампы, вроде они все похожи друг с другом, разница только в мощности и в типе колбы. Но, вот здесь и существует особенности, ведь можно подобрать такую колбу, с помощью которой можно будет увеличить яркость светодиодной лампы. Как бы это не звучало, но без особых усилий вы сможете сделать так, что ваша LED будет светить гораздо ярче. Однако здесь есть множество особенностей, их стоит брать в учет. Как увеличить яркость светодиодной лампы

Читайте так же:
Выборы сечения кабеля по току

Функция матового пластика

Чаще всего диоды не защищены в недорогих китайских кукурузах, а с точки зрения защиты глаз от яркого света, для кукурузы колба и не требуется. В кукурузе невозможно увидеть все светодиоды одновременно, так как они физически расположены по окружности. А вот для светодиодных ламп классической формы защита от яркого света очень актуальна. При тестировании Экономки на 850 Люмен без защиты, которая состоит из 11 светодиодов на 1 Ватт, мне хватило взгляда в половину секунды, чтобы потом в течение 5 минут видеть пятна от перед глазами. Особый вред открытые светодиоды будут наносить глазам детей и пожилых бабулек, дедулек.

Матовая колба

Матовая колба тестируемой светодиодной лампы Экономка

Обычно производители пишут, что матовая она рассеивает свет, делая угол свечения больше 180 градусов. Так же полупрозрачный поликарбонат задерживает большое количество света и мешает охлаждать светодиоды, которые находятся в замкнутом пространстве.

Лично я предпочитаю использовать классические led кукурузы, которые легко разбираются, ремонтируются, не перегреваются, и светят на 360 градусов. Единственное не надо их трогать влажными руками, так как контакты ничем не прикрыты.

Считаю, что непрозрачную колбу можно снимать в некоторых случаях, например:

  1. если лампочка находится в прозрачном рифленом плафоне, которые ставятся в подъездах;
  2. в закрытых матовых плафонах шарообразной и плоской формы;
  3. в открытом плафоне, если его свет направлен вверх, в потолок;
  4. в люстрах, которые рассчитаны на свечу, которая ставится вертикально.

Если колбу не убрать при установке в матовый плафон, то в итоге мы потеряем половину яркости лампы.

Виды колб у светодиодных ламп

При выборе светодиодной лампы очень сложно определиться с формой колбы, так как на данный момент их существует несколько видов:

Стеклянные LED лампы тоже могут быть как матовыми, так и прозрачными. Именно форма колбы может повлиять на яркость и освещенность светодиодной лампы. Итак, рассмотрим несколько особенностей при выборе формы светодиодной лампы.

Замеры разницы освещенности спереди

Проведем небольшое тестирование светодиодной лампы Экономка на 10W. При помощи люксметра Mastech MS6610 проведем замеры светового потока. Так же узнаем, рассеивает свет, или это все сказки.

Замер спереди

Измерение освещенности

Источник света будет расположена в углу комнату на расстоянии 80 см от стен, достаточное расстояние чтобы избежать отраженного света. В условиях полумрака освещённость составляет 3-5 Люкс, что практически равно нулю и учитывать при расчетах не будем.

Сначала измерим падение освещенности непосредственно перед источником. С колбой получается 284 Люкса, без неё 460. Разница составляет 176, то есть без матового колпака освещенность на 62% больше.


Лампа с самым большим углом освещенности и лучшей светоотдачей

Лампы в форме кукурузы, как правило идут без какой-либо колбы. В такой лампе диоды расположены по всему периметру колбы, что позволяет увеличить угол рассеивания до 360 градусов. Так как данные лампы не защищены никакой колбой, то следует избегать прикосновений голыми руками к диодам, в противном случае диоды могут просто перегореть. Как правило LED лампы, у которых диоды не защищены колбой, могут нанести вред зрению, даже при коротком взгляде на открытые диоды, возникает дискомфорт, то есть в течении нескольких минут вы
можете видеть пятна перед глазами и ощущать лёгкое помутнение.

Увеличение яркости LED лампы

В характеристиках к светодиодной лампе, которые пишут производители, указывается что у матовой лампы угол освещенности составляет больше 180 градусов. Поэтому непрозрачную колбу можно снять в тех случаях если:

  • В подъезде установлен светильник с матовым стеклом, либо светильник вовсе отсутствует, убрав колбу с лампы вы значительно увеличите светоотдачу диодов;
  • Плафоны открытого типа, в данном случае свет лампы должен быть обязательно направлен вверх;
  • В люстрах, в которых лампочка должна стоять вертикально.

ВНИМАНИЕ! На лампу с открытыми диодами, не должна попадать влага!

Для примера мы выбрали лампу марки «Включай» OPTI R50-7,5W-E14, цветовая температура 4000К (белый свет). Световой поток данной лампы с колбой составляет 580 Люмен, убрав колбу мы получаем светоотдачу в 725 Люмен, то есть мы смогли добиться увеличения яркости на 25%.

Замеры освещенности сбоку

Проведем замеры под углом в 90 градусов, то есть сбоку. Угол свечения светодиодов составляет 120 градусов, соответственно, сектор, в котором разница освещенности будет только заключаться в 30 градусах от плоскости, это вычисляем (180-120)/2=30 градусов.

Замер освещенности сбоку

Замер освещенности сбоку

Как видно по фото, освещенность на этой границе практически одинакова, соответственно с колбой 216 Лк, без неё 229 Лк. Разница 12 Лк, то есть её практически нет. Только не смотрите на освещения по фото, так как камера подстраивается сама, и кажется, что разница есть, хотя Люксметр показывает равные значения.

В качестве примера мы взяли лампу Philips и сняли с нее защитную колбу, вот такие результаты у нас получились:

  • С колбой – 500 люмен.
  • Без колбы – 689 люмен.

Как видите, результат ни лицо, мощность увеличилась на 27%. Если такая лампа будет установлена в нежилом помещении – это прекрасное решение.

Совет, можно купить дешевую лампу и снять с нее колбу, так вы получите хорошую яркость по низкой стоимости.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector