Ikea73.ru

IKEA Стиль
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое диэлектрические потери и из-за чего они возникают

Что такое диэлектрические потери и из-за чего они возникают?

Мы привыкли считать, что потери электрической энергии происходят в проводниках из-за сопротивления. Это верно, но существуют ещё диэлектрические потери. Они хоть и незначительны, но при определённых условиях их влияние может оказаться ощутимым. О потерях энергии в диэлектрической среде первыми обеспокоились энергетики, применявшие в качестве диэлектрика трансформаторное масло.

Что такое диэлектрические потери?

Применение электроизоляционных материалов основано на том, что они препятствуют электрическому току преодолевать некоторое пространство, ограниченное изолятором. Идеальный изолятор должен абсолютно исключить условия для проводимости электрического тока. К сожалению, в природе не существует таких материалов. Таких диэлектриков также не сумели создать в лабораторных условиях.

Теоретически можно обосновать существование идеальных изоляторов, но синтезировать на практике такие вещества не реально, так как даже ничтожно малая доля примесей образует диэлектрическую проницаемость. Иначе говоря, рассеяния энергии в диэлектрической среде будут наблюдаться всегда. Речь может идти об усилиях, направленных на уменьшение таких потерь.

Исходя из того, что часть электроэнергии неизбежно теряется в изоляторе, был введён термин «диэлектрические потери» – необратимый процесс преобразования в теплоту энергии электрического поля, пронизывающего диэлектрическую среду, То есть, это электрическая мощность, направленная на нагревание изоляционного материала, пребывающего в зоне действия электрического поля.

Значение потерь определяется как отношение активной мощности к реактивной. Обычно активная мощность, потребляемая диэлектриком очень мала, по сравнению с реактивной мощностью. Это значит, что искомая величина тоже будет мизерной – сотые доли от единицы. Для вычислений используют величину «тангенс угла», выраженную в процентах.

Электрическую характеристику, выражающую рассеивающее свойство диэлектрика, называют тангенсом угла диэлектрических потерь. При расчётах принято считать, что диэлектрик является изоляционным материалом конденсатора, меняющего ёмкость и дополняющий до 90º угол сдвига фаз φ, образованный векторами напряжения и тока в цепи. Данный угол обозначают символом δ и называют углом рассеивания, то есть, диэлектрических потерь. Величина, численно равна тангенсу данного угла ( tgδ ), это и есть та самая характеристика диэлектрического нагрева.

tgδ применяется в расчётах для определения величины рассеиваемой мощности по соответствующей формуле. Поэтому его вычисление имеет практическое значение. Введение понятия тангенса угла позволяет вычислять относительные значения диэлектрических потерь. А это позволяет сравнивать по качеству различные изоляторы.

Именно этот показатель или просто угол δ производители трансформаторных масел указывают на упаковке своей продукции. По величине угла ( tg δ ) можно судить о качестве изолятора: чем меньше угол δ, тем высшие диэлектрические свойства проявляет изоляционный материал.

Методика расчета

Составим схему, в которой включен конденсатор с диэлектриком. При этом активная мощность в данной схеме должна соответствовать мощности, рассеиваемой в диэлектрике рассматриваемого конденсатора, а угол сдвига, образованный векторами тока и напряжения, должен равняться углу сдвига в конденсаторе. Такие условные схемы с последовательным и параллельным включением активного сопротивления представлены на рис. 1. На этой же картинке построены векторные диаграммы для каждой схемы.

Эквивалентные схемы диэлектрика Рис. 1. Эквивалентные схемы диэлектрика Формулы для расчетаРис. 2. Формулы для расчета

Значения символов понятны из рисунка 1.

Заметим, что в качественных диэлектриках величина tg 2 δ очень мала, поэтому ею можно пренебречь. Тогда каждая из формул для вычисления диэлектрических потерь приобретёт вид: Pa = U 2 *ω*C*tδ. Если напряжение в этой формуле выразить в вольтах, угловую частоту ( ω ) в с -1 , а ёмкость C в фарадах, то получим мощность ( Pa ) в ваттах.

Очевидно, что параметры вычислений на основании приведённых схем зависят от частоты. Из этого следует, что вычислив параметры диэлектриков на одной частоте, их нельзя автоматически переносить для расчётов в других диапазонах частот.

Механизмы потерь по-разному проявляются в твёрдых, жидких и газообразных веществах. Рассмотрим природу рассеяний в этих диэлектриках.

Диэлектрические потери в разных диэлектриках

В газах

Для газообразных веществ или их включений в материалах диэлектрика характерны ионизационные потери при определённых условиях: когда молекулы газа ионизируются. Например, ионизация газов происходит во время электрических пробоев сквозным током. При этом молекулы газа превращаются в ионы, создавая токопроводящий канал с максимумом напряженности. В результате диэлектрические потери лавинообразно возрастают, стремясь к максимуму tg угла.

При таких диэлектрических потерях мощность стремительно растёт: Ри = А1 f (U – Uи) 3 , где А1 постоянная, зависящая от вида вещества, f — частота поля, а символами U, Uи обозначено приложенное напряжение и напряжение ионизации, зависящее от давления газа.

Если величина напряжения Uи не достигает порога, необходимого для запуска процесса ударной ионизации, то нагревание диэлектрика является незначительным, потому что, при поляризации, пространственная ориентация дипольных молекул в газах не влияет на электропроводность. Поэтому газы – самые лучшие диэлектрики, с низкими потерями, особенно в диапазоне высоких частот.

Читайте так же:
Как перенести интернет розетку

Зависимость тангенса угла рассеивания мощности в диэлектриках с газовыми включениями, иллюстрирует график на рис. 3.

Зависимость тангенса угла изоляторов с воздушными включениями от напряжения

Рис. 3. Зависимость тангенса угла потерь

В жидких диэлектриках

Наличие диэлектрических потерь в жидкостях, в основном зависят от их полярности. В среде неполярных диэлектриков рассеяния обусловлены электропроводностью. При наличии в жидких веществах примесей дипольных молекул (так называемые полярные жидкости), рассеивание мощности может быть значительным. Это связано с повышением электропроводности, в результате дипольно-релаксационной поляризации.

Жидкие полярные изоляторы имеют выраженную зависимость потерь от вязкости. Поворачиваясь под действием магнитного поля в вязкой среде, диполи, в результате трения, нагревают её. Рассеиваемая мощность жидкого диэлектрика возрастает до тех пор, пока механизмы поляризации успевают за изменениями электрического поля. При достижении максимума поляризации процесс стабилизируется.

В твердых веществах

Высокочастотные диэлектрики с неполярной структурой обладают небольшим tg δ. К ним относятся качественные материалы:

  • сера;
  • полимеры;
  • парафин и некоторые другие.

Потери у диэлектриков с полярной молекулой более значительны. К таким материалам можно отнести:

  • органические стёкла;
  • эбонит и другие каучуковые вещества;
  • полиамиды;
  • целлюлозосодержащие материалы;
  • фенолоформальдегидные смолы.

Керамические диэлектрики без примесей имеют плотную ионно-решётчатую структуру. У них высокое удельное сопротивление. а значение tg δ таких материалов не превышает величины 10 -3 .

Вещества с неплотным расположением ионов обладают ионной поляризацией. У них наблюдается также электронно-поляризационная поляризация. tg δ этих диэлектриков ещё выше – от 10 -2 .

Сегнетоэлектрики и вещества со сложными неоднородными структурами, такие как текстолит, пластмассы, гетинакс и другие, имеют tg δ > 0,1.

Рассеивание мощности в результате сквозной электропроводимости происходит во всех диэлектриках. Однако потери становятся ощутимыми лишь при частотах от 50 до 1000 Гц, в температурном режиме более 100 ºC. Высокое переменное напряжение, как и удельное сопротивление также влияет на величину рассеивания.

Виды диэлектрических потерь

В зависимости от электрических свойств различных видов диэлектриков различают следующие виды диэлектрических потерь, сопровождающихся нагревом диэлектрика:

  • ионизационные потери, наблюдаемые в газах;
  • релаксационные потери в жидких (вязких) диэлектриках, в результате релаксационной поляризации;
  • рассеяние в веществах, имеющих дипольную поляризацию;
  • поляризационное рассеивание в веществах, имеющих сквозную электропроводность;
  • высокочастотные резонансные потери;
  • диэлектрические потери, вызванные неоднородностью структуры твердых диэлектриков.

Диэлектрические вещества по-разному ведут себя при различных температурах, при постоянном или переменном токе. Максимумы потерь происходят при достижении определённого порога температуры. Этот порог индивидуален для каждого вещества. Тангенс угла δ зависит также от приложенного напряжения (рис. 4).

Зависимость тангенса угла от напряжения

Рис. 4. Зависимость тангенса угла от напряжения

Чем измерить?

Рассчитывать потери диэлектриков по формуле не очень удобно. Часто величину tg производители определяют опытным путём и указывают на упаковках или в справочниках.

Существуют специальные измерительные приборы, такие как «ИПИ – 10» (производитель Tettex), «Тангенс – 3М» или измеритель «Ш2», позволяющие с высокой точностью определить уровень рассеивания в диэлектриках либо найти тангенс угла рассеяния. Устройства довольно компактны и просты в работе. С их помощью можно исследовать свойства твёрдых и жидких веществ на предмет диэлектрических потерь.

Вещества проводящие электрический ток список

Из школьного курса физики известно, что электрический ток представляет собой упорядоченное движение заряженных частиц. При этом должно соблюдаться как минимум два условия — это наличие свободных носителей заряда и присутствие электрического поля. Рассмотрим более подробно какие вещества проводят электрический ток, и какие условия для этого должны быть созданы.

Общим для всех вариантов будет обязательное наличие поля, только в этом случае возможно создание силы, которая будет приложена к заряду для его перемещения от одного электрода к другому.

Способность различных веществ проводить электрический ток

Если не принимать во внимание физическое состояние, то все материалы можно условно разделить на три группы по степени проводимости электричества:

Рассмотрим каждый случай более подробно.

Проводники

К этой группе можно отнести вещества, которые проводят электрический ток великолепно. Это – металлы, электролиты и ионизированные газы.

Металлы как проводники электрического тока

Первая подгруппа веществ имеет кристаллическую решетку и отличается большим наличием свободных электронов, которые и являются носителями заряда при создании соответствующих условий, в частности электрического поля. Их расплавы проводят электрический ток не хуже, чем в твердой фазе. Не стоит забывать, что металлы могут быть и в жидком состоянии, примером чего является ртуть. Но наибольшее распространение, в качестве проводников, получили твердые фазы этих веществ. При взаимодействии с кислородом металл образуют оксиды, которые проводят электрический ток только при определенных условиях и по своей сути являются полупроводниками. Речь о них пойдет ниже. Из металлов отличной электропроводностью обладают медь, алюминий, железо, серебро и др.

Читайте так же:
Как зарядить usb через розетку
Жидкие проводники электрического тока

Под жидкими проводниками понимают кислоты, растворы, электролиты, которые проводят электрический ток. Носителем заряда в данных случаях являются ионы. Необходимо отметить, распространенное убеждение что вода является проводником, в корне неверно. Когда Н2О находиться в чистом состоянии, свободные ионы в ней отсутствуют. Если при помещении в воду электродов наблюдается протекание электрического тока, то это говорит только о том, что в данном случае мы имеем дело с раствором какого-либо вещества.

Полупроводники

Это особая группа веществ, которая проводит электрический ток при создании определенных условий. В кристаллической решетке полупроводников наблюдается крайне ограниченное наличие свободных носителей зарядов. Но при создании соответствующих условий, например, при воздействии света, понижении или повышении температуры, или каких-либо специфических факторов количество освобожденных носителей возрастает.

Вещества, которые проводят электрический ток и относятся к группе полупроводников обладают одной особенностью – под воздействием внешних факторов связанные электроны покидают свое место, и образуют т.н. «дырку». Она имеет положительный заряд. При создании электрического поля электроны и «дырки» двигаются навстречу друг другу, образуя электрический ток. Такая особенность называется электронно-дырочной проводимостью. Наиболее распространенными полупроводниками считаются кремний, германий, селен, галлий, теллур и т.д.

Диэлектрики

В диэлектриках свободные носители заряда отсутствуют. Протекание электрического тока в таких веществах невозможно при стандартных внешних условиях. Наиболее популярными материалами, которые не проводят электрический ток является слюда, керамика, резина и каучуки.

Также к ним можно отнести воздух и определенные виды газов, но для них, определяющим будет являться степень загрязнения. При наличии достаточного количества свободных ионов, диэлектрические свойства они утрачивают. Таким образом нельзя слепо полагаться что какое-либо вещество является абсолютным диэлектриком и не проводит электричество. При определенных обстоятельства большая часть веществ, заведомо считающихся диэлектриками могут приобретать свойства полупроводников.

Так, например, оксид железа, который в обычных условиях препятствует протеканию электрического тока, при повышении давления и температуры переходит в состояние проводимости, при этом внутренняя его структура не нарушается.

Подводя итоги, отметим что качественное различие веществ, пропускающих или препятствующих протеканию электрического тока является их проводящее состояние. Для металлов оно является постоянным, а для диэлектриков и полупроводников возбужденной фазой. Количественное определение проводимости выражается через удельное электрическое сопротивление.

При появлении в нашей жизни электричества, мало кто знал о его свойствах и параметрах, и в качестве проводников использовали различные материалы, было заметно, что при одной и той же величине напряжения источника тока на потребителе было разное значение напряжения. Было понятно, что на это влияет вид материала применяемого в качестве проводника. Когда ученные занялись вопросом по изучению этой проблемы они пришли к выводу, что в материале носителями заряда являются электроны. И способность проводить электрический ток обосабливается наличием свободных электронов в материале. Было выяснено, что у некоторых материалов этих электронов большое количество, а у других их вообще нет. Таким образом существуют материалы, которые хорошо проводят электрический ток, а некоторые не обладают такой способностью.
Исходя из всего выше сказанного, все материалы поделились на три группы:

Каждая из групп нашла широкое применение в электротехнике.

Проводники

Проводниками являются материалы, которые хорошо проводят электрический ток, их применяют для изготовления проводов, кабельной продукции, контактных групп, обмоток, шин, токопроводящих жил и дорожек. Подавляющее большинство электрических устройств и аппаратов выполнена на основе проводниковых материалов. Мало того, скажу, что вся электроэнергетика не могла б существовать не будь этих веществ. В группу проводников входят все металлы, некоторые жидкости и газы.

Так же стоит упомянуть, что среди проводников есть супер проводники, сопротивление которых практически равно нулю, такие материалы очень редки и дороги. И проводники с высоким сопротивлением — вольфрам, молибден, нихром и т.д. Такие материалы используют для изготовления резисторов, нагревательных элементов и спиралей осветительных ламп.

Но львиная доля в электротехнической сфере принадлежит рядовым проводникам: медь, серебро, алюминий, сталь, различные сплавы этих металлов. Эти материалы нашли самое широкое и огромное применение в электротехнике, особенно это касается меди и алюминия, так как они сравнительно дешевы, и их применение в качестве проводников электрического тока наиболее целесообразно. Даже медь ограничена в своем использовании, её применяют в качестве обмоточных проводов, многожильных кабелях, и более ответственных устройствах, еще реже встречаются медные шинопроводы. А вот алюминий считается королем среди проводников электрического тока, пускай он обладает более высоким удельным сопротивлением чем медь, но это компенсируется его весьма низкой стоимостью и устойчивостью к коррозии. Он широко применяется в электроснабжении, в кабельной продукции, в воздушных линиях, шинопроводах, обычных проводах и т.д.

Полупроводники

Полупроводники, что-то среднее между проводниками и полупроводниками. Главной их особенностью является их зависимость проводить электрический ток от внешних условий. Ключевым условием является, наличие различных примесей в материале, которые как раз-таки обеспечивают возможность проводить электрический ток. Так же при определенной компоновку двух полупроводниковых материалов. На основе этих материалов на данный момент, произведено множество полупроводниковых устройств: диоды, светодиоды, транзисторы, семисторы, тиристоры, стабисторы, различные микросхемы. Существует целая наука, посвященная полупроводникам и устройствам на их основе: электронная техника. Все компьютеры, мобильные устройства. Да что там говорить, практически вся наша техника содержит в себе полупроводниковые элементы.

К полупроводниковым материалам относят: кремний, германий, графит, гр афен, индий и т.д.

Диэлектрики

Ну и последняя группа материалов, это диэлектрики, вещества не способные проводить электрический ток. К таким материалам относят: дерево, бумага, воздух, масло, керамика, стекло, пластмассы, полиэтилен, поливинилхлорид, резина и т.д. Диэлектрики получили широкое применение благодаря своим качествам. Их применяют в качестве изолирующего материала. Они предохраняют соприкосновение двух токоведущих частей, не допускают прямого прикосновения человека с этими частями. Роль диэлектриком в электротехнике не менее важна чем роль проводников, так как обеспечивают стабильную, безопасную работу всех электротехнических и электронных устройств. У всех диэлектриков существует предел, до которого они не способны проводить электрический ток, его называют пробивным напряжением. Это такой показатель, при котором диэлектрик начинает пропускать электрический ток, при этом происходит выделение тепла и разрушение самого диэлектрика. Это значение пробивного напряжения для каждого диэлектрического материала разное и приведено в справочных материалах. Чем он выше, тем лучше, надежней считается диэлектрик.

Параметром, характеризующим способность проводить электрический ток является удельное сопротивление R, единица измерения [Ом] и проводимость, величина обратная сопротивлению. Чем выше этот параметр, тем хуже материал проводит электрический ток. У проводников он равен от нескольких десятых, до сотен Ом. У диэлектриков сопротивление достигает десятков миллионов ом.

Все три вида материалов нашли широкое применение в электроэнергетике и электротехнике. А так же тесно взаимосвязаны друг с другом.

Ответ или решение 2

Вещества по способности проводить электрический ток делятся на 3 группы:

Читайте так же:
Где установить розетку под кондиционер

Проводники – вещества, которые хорошо проводят электрический ток.

К ним относятся металлы, растворы солей, кислот, щелочей в воде. Для них характерно наличие свободных заряженных частичек (электронов, ионов), которые под действием электрического поля двигаются.

Полупроводники – вещества, в которых электрическая проводимость зависит от внешних условий. Количество свободных заряженных частиц в них зависит от определенных условий: температуры, освещенности, наличия примесей.

К ним относятся кремний, индий, германий.

Диэлектрики – вещества, которые ни при каких условиях не проводят электрический ток. В них очень маленькая концентрация свободных носителей заряда.

Электрическим током называется направленное движение заряженных частиц.

Для появления электрического тока необходимо 2 условия:

  • наличие заряженных частиц;
  • заряженные частицы должны двигаться в одном направлении.

В зависимости от наличия свободных заряженных частиц все вещества разделяются на 3 вида:

Проводники

Это вещества, в которых большая концентрация свободных носителей заряда. К ним относятся металлы, электролиты и ионизированный газ.

В металлах свободными носителями заряда являются свободные электроны, в электролитах и ионизированном газе ионы. Положительно заряженные ионы называются катионами, отрицательно заряженные ионы анионы.

Под действием электрического поля электроны в металлах, ионы в электролитах и газе начинают упорядоченно двигаться, образовывая электрический ток. К электролитам относят водные растворы солей и кислот.

У металлов проводимость электронная, в электролитах и ионизированном газе ионная.

Полупроводники

Вещества, концентрация свободных носителей электрического заряда зависит от внешних условий (температуры, освещенности и т.д.).

При повышении температуры (освещенности) у вещества, вследствие теплового движения, некоторые электроны становятся свободными, а их место становится вакантным. Место, которое покинул электрон, называется "дырка", она имеет положительный электрический заряд.

При наличии электрического поля "дырки" и электроны двигаются в противоположенных направлениях, образовывают направленное движения электрических зарядов, то есть электрический ток. У полупроводников электронно-дырочная проводимость электрического тока, которая зависит от внешних факторов.

К полупроводникам относят: германий, кремний, селен.

Диэлектрики

Вещества, в которых свободные носители заряда отсутствуют. Диэлектрики не проводят электрический ток, ни при каких условиях, их еще называют изоляторами. К ним относятся слюда, керамика, стекло, резина.

Знакомство с проводниками, полупроводниками и диэлектриками: технические характеристики

диэлектрик электричества

Что главное в материалах, которые используются для электричества? Главным их свойством является токопроводимость. Такие материалы делятся на три вида — проводники, полупроводники, диэлектрики.

Сегодняшняя статья посвящена именно этим материалам. Мы подробно рассмотрим что они из себя представляют, для чего используются и каким образом пропускают ток.

Читайте так же:
Монтаж розеток нормативные документы

Итак, начнем с проводника

диэлектрики электричества

Проводник — это материя, которая состоит из свободных носителей заряженных частиц. При движении этих частиц возникает тепловая энергия, поэтому ему дали название — тепловое движение.

Есть два основных параметра проводника — сопротивление, обозначается буквой R или же проводимость, обозначается буквой G. Проводимость это показатель противоположный сопротивлению — G=1/R.

То есть проводник — это материал, который ведет ток.

Что же является проводником. Металлы — лучшие проводники, особенно медь и алюминий. Также проводниками являются солевые растворы, влажный грунт, углерод. Последний нашел широкое применение в работе со скользящими связями.

Примером такого применения являются щетки в электрическом двигателе. Человеческое тело — тоже проводник электрического тока. Но электропроводные свойства у вышеперечисленных материалов все же ниже, чем в металлах.

Сама структура металлов предполагает в себе огромное количество свободных заряженных частиц, что и делает их лучшими проводниками.

Когда металл попадает под действие электрических полей, то происходит процесс так называемой электроиндукции. То есть заряженные частицы начинают активно двигаться и распределятся.

Перейдем к диэлектрикам

диэлектрики электричества

Диэлектрик — это материя, которая не подчиняется воздействию электрического поля, то есть не пропускает через себя ток, а если и пропускает, то в незначительном количестве.

Происходит это потому, что они не обладают свободно передвигающимися частицами — носителями тока, поскольку в них очень сильная атомная связь.

В жизни такими веществами выступают резина, керамические компоненты, стекло, отдельные виды смол, дистиллированная вода, карбонит, фарфор, текстолит, а так же сухое дерево и так далее.

Именно благодаря свои свойствам, вышеперечисленные материалы являются основой корпусов различных электрических приборов, выключателей, розеток, вилок и других приспособлений, которые контактируют с электричеством непосредственно.

Изоляционные элементы в сетях также изготовляются из диэлектрических материалов.

диэлектрики электричества

Но, не все так просто и с диэлектриками. Если пропускать через них ток выше нормы, хранить их или устанавливать в среде с высокими показателями влажности или неправильно их использовать, то можно вызвать такое явление, как «пробой изолятора» — это означает, что материал диэлектрика теряет свои токонепроводимые функции и становится проводником.

То есть, если в двух словах описать ситуацию, то основное в диэлектрике — это его электроизоляционные способности. Таким образом эти приборы помогают нам защититься от травмирующего воздействия электричества.

Свойства диэлектрика измеряются его электрической прочностью — это показатель, который равняется с напряжением пробоя диэлектрика.

И наконец мы дошли до полупроводников

Полупроводники называются так, потому что у них есть свойство проводить ток, но не всегда. Для этого данному веществу необходимо создать специальные условия. Нужно подать к нему энергию в определенным количестве.

Свои свойства полупроводник имеет потому, что в его структуре очень мало частиц, являющихся свободными носителями, а может быть такое, что их там вовсе нет. Но, стоит повлиять на них определенной энергией — и они появляются и активно двигаются.

Энергия может быть не только электрической, также можно воздействовать тепловой энергией, или различными излучениями. Например, свободно движущиеся элементы появляются при влиянии излучения в УФ-Спектре.

Материалами с такими свойствами являются германий, кремний, так же это может быть смешение арсенида и гелия, мышьяк, селен и прочие.

Применение полупроводников может быть различное. Из данного материала делают микросхемы, светодиоды, транзисторы, диоды и многое другое.

Для того, чтоб более подробно объяснить работу полупроводника, применим к нему так называемую зонную теорию. Упомянутая теория объясняет существование или неимение свободных заряженных частиц в отношении конкретных энергетических уровней.

Энергетический уровень (слой) — это число простых частиц, таких как молекул, атомов, то есть электронов. Данный показатель измеряется в Электронвольтах (ЭВ).

Следует обратить внимание на то, что слои проводника составляют непрерывную диаграмму от зоны валентности и до зоны проводимости. Если эти две зоны осуществляют накладку друг на друга, то возникает зона перекрытия.

В соответствии с влиянием некоторых влияний, например электрических полей, температурного режима и прочего, число электронов может меняться.

Исходя из вышеописанных процессов электроны при минимальной энергетическом воздействии начинают движение в проводнике.

Полупроводники между двумя вышеупомянутыми зонами имеют еще зону запрещенную. Величина данной зоны показывает количество той энергии, которой будет достаточно для проведения тока.

Диэлектрики по структуре похожи на полупроводники, но их защитный шар намного больше благодаря внутренним связям материала.

Мы рассказали о главных свойствах проводников, полупроводников и диэлектриков. Можно сделать вывод, что отличаются они друг от друга своей проводимостью тока. Именно из-за этого у каждого материала есть своя зона применения.

Читайте так же:
Блок розеток 4 гнезда евро

Так, проводники применяются там, где нужна стопроцентная проводимость тока.

Использование диэлектриков приходится на изготовление различной изоляции токопроводящих участков.

Ну, а полупроводники активно применяют в электронике.

Думаем, данная статья раскрыла перед вами все нюансы работы проводников, диэлектриков и полупроводников, их основные отличия и сферы применения.

Что такое проводник и диэлектрик?

электрический ток

Все материалы, существующие в природе, различаются своими электрическими свойствами. Таким образом, из всего многообразия физических веществ в отдельные группы выделяются диэлектрические материалы и проводники электрического тока.

Что представляют собой проводники?

Проводник – это такой материал, особенностью которого является наличие в составе свободно передвигающихся заряженных частиц, которые распространены по всему веществу.

Проводящими электрический ток веществами являются расплавы металлов и сами металлы, недистиллированная вода, раствор солей, влажный грунт, человеческое тело.

Металл – это самый лучший проводник электрического тока. Также и среди неметаллов есть хорошие проводники, например, углерод.

Все, существующие в природе проводники электрического тока, характеризуются двумя свойствами:

  • показатель сопротивления;
  • показатель электропроводности.

Электропроводность – это характеристика (способность) физического вещества проводить ток. Поэтому свойствами надежного проводника являются низкое сопротивление потоку движущихся электронов и, следовательно, высокая электропроводность. То есть, лучший проводник характеризуется большим показателем проводимости.

Например кабельная продукция: медный кабель обладает большей электропроводностью по сравнению с алюминиевым.

Что представляют собой диэлектрики?

Диэлектрики – это такие физические вещества, в которых при заниженных температурах отсутствуют электрические заряды. В состав таких веществ входят лишь атомы нейтрального заряда и молекулы. Заряды нейтрального атома имеют тесную связь друг с другом, поэтому лишены возможности свободного перемещения по всему веществу.

Самым лучшим диэлектриком является газ. Другие непроводящие электрический ток материалы – это стеклянные, фарфоровые, керамические изделия, а также резина, картон, сухое дерево, смолы и пластмассы.

Диэлектрические предметы – это изоляторы, свойства которых главным образом зависимы от состояния окружающей атмосферы. Например, при высокой влажности некоторые диэлектрические материалы частично лишаются своих свойств.

Проводники и диэлектрики широко используются в сфере электротехники для решения различных задач.

Например, вся кабельно-проводниковая продукция изготавливается из металлов, как правило, из меди или алюминия. Оболочка проводов и кабелей полимерная, также, как и вилках всех электрических приборов. Полимеры – отличные диэлектрики, которые не допускают пропуска заряженных частиц.

Серебряные, золотые и платиновые изделия – очень хорошие проводники. Но их отрицательная характеристика, которая ограничивает использование, состоит в очень высокой стоимости.

Поэтому применяются такие вещества в сферах, где качество гораздо важнее цены, которая за него уплачивается (оборонная промышленность и космос).

Медные и алюминиевые изделия также являются хорошими проводниками, при этом имеют не столь высокую стоимость. Следовательно, использование медных и алюминиевых проводов распространено повсеместно.

Вольфрамовые и молибденовые проводники имеют менее хорошие свойства, поэтому используются в основном в лампочках накаливания и нагревательных элементах высокой температуры. Плохая электропроводность может существенно нарушить работу электросхемы.

Диэлектрики также различаются между собой своими характеристиками и свойствами. Например, в некоторых диэлектрических материалах также присутствуют свободные электрически заряды, пусть и в небольшом количестве. Свободные заряды возникают из-за тепловых колебаний электронов, т.е. повышение температуры все-таки в некоторых случаях провоцирует отрыв электронов от ядра, что понижает изоляционные свойства материала. Некоторые изоляторы отличаются большим числом «оторванных» электронов, что говорит о плохих изоляционных свойствах.

Самый лучший диэлектрик – полный вакуум, которого очень трудно добиться на планете Земля.

Полностью очищенная вода также имеет высокие диэлектрические свойства, но таковой даже не существует в реальности. При этом стоит помнить, что присутствие каких-либо примесей в жидкости наделяет ее свойствами проводника.

Главный критерий качества любого диэлектрического материала – это степень соответствия возложенным на него функциям в конкретной электрической схеме. Например, если свойства диэлектрика таковы, что утечка тока совсем незначительная и не приносит никакого ущерба работе схемы, то диэлектрик является надежным.

Что такое полупроводник?

Промежуточное место между диэлектриками и проводниками занимают полупроводники. Главное отличие проводников заключается в зависимости степени электропроводности от температуры и количества примесей в составе. При том материалу свойственны характеристики и диэлектрика, и проводника.

С ростом температуры электропроводность полупроводников растет, а степень сопротивления при этом падает. При понижении температуры сопротивление стремится к бесконечности. То есть, при достижении нулевой температуры полупроводники начинают вести себя как изоляторы.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector