Ikea73.ru

IKEA Стиль
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Приводы высоковольтных выключателей

Приводы высоковольтных выключателей

1. Привод ручной блинкерный автоматический: применяют для малообъемных выключателей. Привод включают вручную, путем поворота рычага из нижнего положения в верхнее, после чего механизм привода удерживается защелкой во включенном состоянии. Снизу в коробке привода установлены встроенные реле тока (1-3) и катушки отключения. Отключается привод автоматически катушками или реле. Или вручную, поворотом рычага из верхнего положения в нижнее, освобождается защелка и происходит отключение.

2. Электромагнитный привод: предназначен для дистанционного и автоматического включения и отключения выключателя на электростанциях и подстанциях.

Недостаток:значительный ток (100А), потребляемый катушками.

Достоинства: наличие унифицированного механизма и сменных электромагнитных блоков.

3. Пружинные приводы: В этих приводах энергия необходимая для включения, запасается в спиральной (ППМ – 10) или цилиндрической (ПП – 74) пружинах, встроенных в маховик. После каждого включения пружины автоматически заводятся через редуктор, с помощью электродвигателя мощностью 1кВт. Пружинными приводами можно выполнить АПВ. Применяется привод ПП – 67 в ВМП – 10 и ВМП – 10 (внутренней установки) и ШПВ – 45 (шкаф). ПП не требует мощного источника постоянного тока (как ЭМ) или сжатого воздуха

4. Пневматические приводы: По принципу действия сходны с ЭМ. Но включают его поршнем под действием сжатого воздуха. При дистанционном включении в нем открывается электропневматический клапан, который подает из резервуара сжатый воздух в рабочий цилиндр. Поршень со штоком поднимается и включает выключатель.

Преимущества: конструктивно прост, надежен в работе, имеет малые габариты и невысокую стоимость, быстродействующий, включается без резких ударов.

Недостатки: необходимость в компрессорной установки, для создания сжатого воздуха, и в разветвленной сети воздухопроводов.

Отечественные заводы изготавливают бетонные реакторы, т.е. реакторы с сухой изоляцией и бетонным каркасом на напряжение 6 – 35кВ и ток 400 – 4000А. Трехфазный реактор представляет собой комплект, состоящий из трех катушек, по катушке на фазу. Обмотка выполняется из медного или алюминиевого многожильного провода, который имеет как наружную, так и внутреннюю изоляцию.

Чтобы предать обмотке механическую прочность, от динамических нагрузок при к.з., ее заливают в особой форме раствором цемента. После затвердевания окрашивают от проникновения влаги.

— обозначение одинарного реактора в схемах.

— обозначение сдвоенного реактора в схемах.

Способы расположения катушек реакторов:

1.Вертикальное

2. Ступенчатого

3.Горизонтальное.

Расстояние между осями S определяется из условий электродинамической стойкости всего комплекта.

Способы установки зависят от массы, размеров и конструкции РУ.

Наряду с одинарными реакторами широкое распространение получили сдвоенные реакторы, имеющие по 2 катушки на каждую фазу, намотанные в одном направлении и включенные согласно. Они имеют три зажима, один средний и два крайних.

Преимуществом сдвоенного реактора является изменение сопротивления в зависимости от применяемой схемы включения катушек и направления токов. Это позволяет изменять способность ограничивать токи к.з..

Комплектные трансформаторные подстанции.

КТП – это подстанция, состоящая из трансформаторов и блоков КРУ или КРУН, поставленные с завода полностью соб­ранными или подготовленными для сборки. КТП применяют в постоянных, а также временных электроустановках промышленных предприятий, т.к. они транспортабельны и просты для монтажа и демонтажа. Изготавливают для внутренней КТП и наружной КТПН установки, могут быть открытыми и закрытыми.

КТП внутренней установки напряжением 6 – 10/0,4 – 0,23кВ применяют для непосредственного снабжения промышленных объектов, установок. Устанавливают вблизи потребителей, что значительно упрощает и удешевляет распределительную сеть, идущую к токоприемникам, и дает возможность выполнять ее совершенными (в конструктивном отношении) магистралями ШМА и распределительными ШРА шинопроводами. Для безопасности эксплуатации на КТП применяют трансформаторы с сухой изоляцией и баком повышенной прочности.

Комплектные цеховые трансформаторные подстанции выполняют на напряжение 6 –10/0,4 – 0,23кВ с трансформаторами до 2500кВА. На сравнительно небольшой площади, занимаемой КТП, размещают силовой трансформатор, коммутационную защитную и измерительную аппаратуру и при необходимости секционный автомат для присоединения второго комплекта двух трансформаторной КТП. В КТП на стороне высокого напряжения применяют предохранители ПК и выключатели ВНП, на стороне низкого напряжения – предохранители ПН – 2 или Автоматические выключатели АВМ.

МАКСИМАЛЬНЫЕ ТОКОВЫЕ ЗАЩИТЫ НА ПЕРЕМЕННОМ ОПЕРАТИВНОМ ТОКЕ

Требования к ТТ, питающим оперативные цепи. Источником переменного оперативного тока в схемах МТЗ обычно служат ТТ. Основным требованием, предъявляемым к ТТ, питающим оперативные цепи, является условие, чтобы их мощность STT была достаточна для покрытия мощности, потребляемой оперативной цепью Sо.ц, т.е. мощности, необходимой для срабатывания электромагнита отключения (ЭО) выключателя SЭО и элементов логической части РЗ Sл.ч:

Читайте так же:
Автоматические выключатели дивногорского завода

Большую часть мощности Sо.ц составляет потребление ЭО выключателя. В зависимости от типа привода выключателя значение S0 ц при токе срабатывания ЭО колеблется от 30 до 1000 Вт. Эта мощность, как правило, превышает значение номинальной мощности ТТ (STT ном), при этом токовая погрешность ТТ ΔI выходит за пределы значений, допустимых для устройств РЗ. Поэтому в тех случаях, когда из-за большой нагрузки, создаваемой оперативными цепями, погрешность ΔI> 10%, для питания оперативных цепей выделяются отдельные ТТ, не связанные с измерительной частью РЗ. Мощность, отдаваемая ТТ STT = IвUв, имеет некоторое предельное значение. С учетом того, что вторичное напряжение ТТ Uв= IвZн, a вторичный ток Iв = Iп /kI ΔI:

где Zн – сопротивление нагрузки оперативных цепей ТТ (см. §3.1). При некотором оптимальном значении Zн мощность STT достигает своего максимума. При дальнейшем увеличении Zн погрешность ΔI становится более 50%, значение резко уменьшается и STT начинает снижаться (рис.4.16). Таким образом, каждый ТТ имеет предельную мощность STT mах. Для отключения выключателей 110-220 кВ с механизмом отключения, требующим больших усилий, мощность ТТ оказывается недостаточной.

Схемы МТЗ на переменном оперативном токе. Схемы МТЗ с питанием оперативных цепей от источников переменного тока (см. §1.9) могут выполняться: с непосредственным питанием от ТТ по принципу дешунтирования ЭО выключателей; с питанием выпрямленным током, от специальных блоков питания; с питанием от предварительно заряженных конденсаторов.

Схемы с дешунтированием электромагнитов отключения выключателя. Подобные схемы МТЗ в отечественной практике выполняются только на электромеханических реле как с зависимой, так и независимой характеристикой выдержки времени.

Схемы МТЗ с зависимой характеристикой. На рис.4.17, с приведена наиболее распространенная двухфазная схема с двумя ТТ, установленными на фазах А и С и с двумя токовыми реле КА1 и КА2,действующими с выдержкой времени, зависящей от тока. Трансформаторы тока ТАА и ТАС, питающие токовые реле, включенные по схеме неполной звезды, используются как источники оперативного тока.

Привод выключателя выполняется с двумя ЭО (YAT1 и YAT2), которые приходят в действие от токов, проходящих в ТАAи ТАС. Вторичный ток ТТ подается в YAT1 и YAT2 контактами токовых реле КА1 и КА2. Их контакты должны быть рассчитаны на переключение больших токов до 150 А и производить операцию переключения без разрыва вторичной цепи ТТ. Принцип выполнения подобной контактной системы показан на рис.4.18. В нормальном режиме токовые реле не действуют, их подвижный контакт 3 находится в положении 1, при котором вторичная цепь каждого ТТ замкнута и ее ток питает обмотку соответствующего реле КА. Цепи обоих ЭО (YAT1 и YAT2) разомкнуты.

При КЗ одно или оба реле КА срабатывают. Подвижный контакт 3 сработавшего реле, например КА1, переключается и замыкает сначала неподвижный контакт 2 (рис.4.17 и 4.18), подключая YAT1 ко вторичной цепи ТТ, а затем без разрыва цепи ТТ размыкает контакт 1, дешунтируя при этом YAT1. После дешунтирования весь ток ТАА замыкается через YAT1, который отключает выключатель Q.

На рис.4.17, б приведена двухфазная схема с одним токовым реле КА. В этой схеме привод выключателя имеет один электромагнит отключения YAT. Реле КА и YAT включены на ток Ip=Ia–Ic.

В обеих схемах в качестве токовых реле применяются реле РТ-85 или РТ-90 (см. §2.11), имеющие ограниченно зависимую характеристику времени действия и специальные контакты для дешунтирования электромагнита отключения.

Схема защиты с независимой выдержкой времени. На рис.4.19 изображена схема в двухфазном исполнении с двумя токовыми реле, включенными на токи фаз А и С: КА1 и КА2. Логическая часть схемы состоит из реле времени КТ и промежуточных реле КL1 и KL2, дешунтирующих YAT1 и YAT2. Схема выполняется с помощью РТ-40 и специальных реле переменного тока: времени РВМ-11, промежуточных РП-361 и указательных.

Читайте так же:
Как подключить выключатель от плиты

Для ограничения и стабилизации значений токов, поступающих в обмотку реле времени КТ (типа РВМ), последняя питается током через промежуточные насыщающиеся трансформаторы тока (ПНТ) TLAи TLC. При КЗ реле КТ включается на вторичный ток ПНТ (TLAили TLC) контактами пусковых реле тока КА1 или КА2. Однако при двухфазной КЗ между фазами А и С будут работать оба пусковых реле и реле КТ окажетсявключенным на сумму вторичных токов Ia + Ic,которая в этом случае равна нулю, поскольку Ia= Ic. Для исключения этого недостатка в схеме предусмотрено размыкание вторичной цепи TLCконтактами реле КА1, что обеспечивает и в этом случае действие КТ от тока фазы А. Промежуточные реле КL1 и KL2 включаются через ПНТ на токи IIc. Обмотки КL1 и KL2 питаются токами через выпрямители VS1 и VS2. Контакты промежуточных реле, дешунтирующие электромагниты отключения, выполняются так же, как у токовых реле в схемах на рис.4.17 и рассчитаны на переключение до 150 А. При КЗ в зоне сработавшее реле, например КА1, замыкает вторичную цепь TLA(рис.4.19, а), приводя в действие КТ. После замыкания контакта КТ1 (рис.4.19, в) КL1 переключает контакт КL1.1 вверхнее положение без разрыва цепи ТАA. Ток Ia замыкается через YAT1, который отключает выключатель. При срабатывании КА2 или КА1 и КА2 вместе схема действует аналогично.

Возврат всех реле в исходное состояние происходит после отключения КЗ и, следовательно, при отсутствии тока в ЭО. Поэтому в рассматриваемой схеме и во всех других, у которых оперативные цепи питаются от ТТ, вспомогательный (блокировочный) контакт выключателя в цепи ЭО не требуется.

Схемы с дешунтированием имеют особенность, заключающуюся в том, что ТТ до момента срабатывания РЗ нагружены, как обычно, сопротивлением реле и соединительных проводов. Благодаря этому обеспечиваются нормальные условия работы ТТ с допустимой погрешностью ε

27 Август, 2011 30241 Печать

Автоматическое повторное включение (АПВ)

Автоматическое повторное включение применяется на всех воздушных и воздушно-кабельных линиях напряжением выше 1кВ. АПВ представляет собой устройство, которое предназначено для повторного включения линии после исчезновения напряжения. Работа АПВ уменьшает перерывы питания и связанные с этими перерывами экономические потери из-за нарушения работы предприятий-потребителей электроэнергии.

АПВ разделяются по следующим признакам

В зависимости от вида повреждения устройства повторного включения бывают трехфазные и однофазные, а также комбинированные, которые работают как однофазные при замыкании одной фазы в следствии кз, а при трехфазных кз – как трехфазные.

Также АПВ делятся в зависимости от количества повторных включений на АПВ однократного и многократного действия.

По виду оборудования, на котором применяется АПВ, разделяют на АПВ шин, линий, трансформаторов и электродвигателей.

По виду контроля – простое, несинхронное, быстродействующее, с проверкой наличия напряжения, с проверкой отсутствия напряжения, с ожиданием синхронизма, с улавливанием синхронизма, с самосинхронизацией.

К схемам устройств АПВ предъявляются следующие требования

— схема должна срабатывать при аварийном отключении выключателя линии с соблюдением заданных условий (наличие синхронизма с сетью, отсутствие или наличие напряжения, восстановление значения частоты).

— схема не должна срабатывать при отключении выключателя обслуживающим персоналом или релейной защитой сразу при включении. Также бывает предусмотрена защита от включения АПВ при действии определенных защит.

— схема должна обеспечивать заданное количество повторных включений, обычно это 1, 2 или 3. При этом недопустимо многократное включение на короткое замыкание, так как это может привести к тяжелым последствиям.

— время повторной подачи напряжения должно быть минимально возможным для предотвращения простоя потребителей, за исключением особых случаев.

— схемы должны обеспечивать возврат в исходное положение готовности по включении выключателя, на который действовало АПВ.

Выдержки времени на срабатывание и возврат АПВ на линии

Вначале разберем линию с односторонним питанием. Существует две уставки, которые характеризуют устройства повторного включения. Первая, это выдержка времени на повторное включение. Она выбирается исходя из двух условий. Первое условие – это готовность привода выключателя, второе – исчезновение дуги и нормализация изоляционной среды. Каждое условие представляет собой сумму времени готовности выключателя (времени гашения дуги и нормализации среды) и времени запаса.

Читайте так же:
Выключатель электромуфты вентилятора камаз

формула расчета АПВ

По большему значению из двух условий и принимается время срабатывания.

Вторая уставка в АПВ – это время возврата АПВ. Эта величина состоит из наибольшего времени действия защиты, времени отключения выключателя и величины времени запаса.

формула расчета времени возврата АПВ

На линиях с двусторонним питанием, к вышеизложенным двум условиям по определению выдержки времени на повторное включение, добавляется третье. А добавляется оно из-за того, что питания у линии два и отключаться перед работой АПВ она должна с двух сторон.

расчет АПв на линии с двусторонним питанием

Несинхронное АПВ

НАПВ является наиболее простым АПВ и применяется при разделении двух частей энергосистемы независимо от разности частот их напряжений.

Расчет несинхронного режима

Существуют экспериментально-расчетные исследования целесообразности применения НАПВ. Ниже приведены выражения для определения возможности этого режима для отдельных элементов энергосистемы.

выражения для определения возможности несинхронного режима для отдельных элементов энергосистемы

    IНС – максимальный возможный ток несинхронного включения (апериодическая составляющая)

максимальный возможный ток несинхронного включения

Суммарное сопротивление рассчитывается в режиме, когда по оборудованию протекает максимально возможный ток.

Для предотвращения повторного включения линии на устойчивое КЗ с одной из сторон линии используется контроль напряжения.

Если его не использовать, то устройство будет производить два включения двух выключателей на КЗ, что будет негативно сказываться на выключателях и работе энергосистемы. Поэтому сначала включается АПВ стороны, где не предусмотрен контроль напряжения и, если неисправность устранилась, то сработает АПВ с другой стороны, среагировав на наличие напряжения на линии.

НАПВ применяют на линиях, которые обладают высокой пропускной способностью и на которых, согласно расчетам, после асинхронного режима частота выравнивается и происходит синхронизация частей энергосистемы.

Если НАПВ используется на линии с двухсторонним питанием, то повторное включение будет сопровождаться толчками тока и активной мощности. Это вызвано тем, что напряжение по обоим концам может иметь различные значения величины и частоты.

Это может отразиться на поведении релейной защиты, неправильном её срабатывании. Поэтому на транзитных участках, где соединяются разные части энергосистемы необходимо следить за правильностью срабатывания релейной защиты и анализировать ее поведение.

2020 Помегерим! — электрика и электроэнергетика политика конфиденциальности связаться с автором сайта

Быстродействующие выключатели: устройство и принцип действия

На сегодняшний день люди активно используют самые разные электрические устройства. Некоторые из них работают при достаточно больших напряжениях, а потому могут быть опасны. Быстродействующие выключатели предназначены как раз для включения и отключения электрических цепей, а также для автоматического разъединения этой цепи при возникновении короткого замыкания.

Общее описание

Сейчас можно смело утверждать, что выключатели такого рода являются одновременно и коммутационной, и защитной аппаратурой.

К примеру, в тяговых сетях постоянного тока, где напряжение достигает 3 кВ, при появлении короткого замыкания сила тока будет резко возрастать до 30-40 кА. Естественно, что такие колоссальные показатели силы тока представляют огромную угрозу для любого оборудования, подключенного к этой сети. Чаще всего это термические и динамические воздействия, приводящие к выходу из строя аппаратуры.

схема быстрого выключателя

Отличие цепи постоянного тока и необходимость БВ

Здесь важно отметить, что между цепями переменного и постоянного тока имеется существенное отличие, из-за которого и требуется использование быстродействующих выключателей. В первом варианте происходит периодическое снижение тока до нуля и угасание дуги, во втором же ток постоянно нарастает до достижения определенного значения. Причем, как показывает практика, требуется всего несколько сотых секунд, чтобы ток достиг максимального значения. Из-за этого производить его отключение гораздо труднее. Кроме того, обычно отключение цепи постоянного тока производится гораздо раньше, чем ток достигнет максимальных значений.

общая схема выключателя

Быстродействующие выключатели обычно имеют пределы отключения от 15 до 27 кА. В зависимости от определенных параметров самой цепи, такого устройства будет вполне достаточно для обеспечения своевременного отключения.

Разновидности

У быстродействующих выключателей имеется специальный механизм, отключающий сеть. ПО принципу действия этого элемента их можно разделить на две категории. Первая категория — устройства с пружинным вариантом отключения, где разрыв цепи достигается за счет усилия мощных отключающих пружин. Вторая категория — магнитно-пружинные приспособления. В них также используется сила пружины, однако к ним добавляется еще и электромагнитное воздействие для отключения цепи.

Читайте так же:
Защита от механических повреждений выключатели

Кроме этого, есть еще один пункт, по которому быстродействующие выключатели делятся на категории — способность реагировать на направление тока.

В данном случае выделяют поляризованные и неполяризованные аппараты. Первый вид способен произвести разрыв цепи при условии, что ток будет проходить в определенном направлении. Второй же вид будет размыкать цепь при достижении определенного значения тока, не обращая внимания на то, в каком направлении он протекает непосредственно через устройство.

подключение автоматических выключателей

Стоит отметить, что ранее выпускались отечественные быстродействующие автоматические выключатели, которые пользовались широкой популярностью на тяговых подстанциях. Здесь стоит добавить, что производство некоторых моделей данного оборудования уже завершилось, однако они все еще находятся в эксплуатации.

Распространенные модели

Ранее довольно активно выпускались и применялись такие типы БВ, как АБ-2/4, ВАБ-28 и ВАБ-43. На сегодняшний же день им на смену идут такие устройства, как быстродействующие выключатели ВАБ-49 и ВАБ-50, а также их различные модификации.

Однако здесь стоит отметить одну важную деталь. Быстродействующий выключатель постоянного тока АБ-2/4 не выпускается уже пару десятков лет, однако все еще находится в активной эксплуатации на разного рода электрических участках с постоянным током. Он рассчитан на рабочий номинальный ток 2 кА и на напряжение 4 кВ.

внутреннее устройство

Устройство АБ-2/4

Для крепления данного прибора у него имеется четыре изолятора, которые располагаются на раме специальной выкатной телеги. В конструкции имеется магнитопровод, которые является основной электромагнитного выключателя. Устройство быстродействующего выключателя подразумевает наличие специальной дугогасительной камеры. В данном случае она представлена лабиринтно-целевым типом и способна растянуть дугу до 4,5 метра. Для ее функционирование требуется магнитное дутье, которое в данном случае развивается за счет мощных полюсов, расположенных снаружи по обеим сторонам камеры.

Сами же провода не находятся без защиты, а встроены в специальный магнитопровод. С двух сторон от такого провода располагается камера катушки магнитного дутья. Вверху стенки данной камеры несколько расходятся и здесь же располагаются несколько, перемежающихся между собой клиновидных перегородок, образующих необходимый лабиринт. Таким образом, удается создать щель зигзагообразного типа, при помощи которой и удается растягивать дугу.

В самой верхней части камеры лабиринт прерывается. Здесь располагаются специальные пламегасительные решетки, которые представлены в виде нескольких пакетов тонких стальных пластин. Они предназначены для охлаждения, а также для деионизации газов и пламени, которыми сопровождается появление дуги.

схема устройства выключателя

Подключение к электрической сети

Работа быстродействующего выключателя заключается в рызмыкании цепи при КЗ и включении/отключении. Для этого в конструкции имеются два специальных контактных вывода. Они предназначены для подключения БВ к электрической сети. Подключение осуществляется через электрические шины. В конструкции также имеется шунт индуктивного типа, который представлен в виде пакета с несколькими стальными пластинами, изолированными друг от друга и одетыми на медную шину.

БВ имеет блок контактов. Они связаны с главными контактами, расположенными в нижней части дугогасительной камеры. Данная связь осуществляется за счет системы тяг и рычагов.

внутренняя конструкция выключателя

Устройство выключателя электромагнитного типа

Механизм электромагнитного выключателя располагается на специальной раме литого типа из чугуна. Механизм располагает магнитопроводом, который представлен двумя литыми брусьями с прямоугольным сечением. Они, в свою очередь, скреплены между собой стержнем круглого сечения, а на него надевается еще одна деталь — держащая катушка. На одном из брусьев также располагается магнитопровод П-образного вида. Он представлен несколькими стальными пластинами, каждая из которых, изолирована от другой. У магнитопровода имеются два стержня. Правый стержень предназначен для крепления включающей катушки. Левый же несет размагничивающий виток главного тока, другими словами, катушку автоматического отключения цепи. Кроме этого, здесь же имеется дополнительная катушка для калибровки. Она способна имитировать главный виток во время проведения настройки прибора.

Другой брус, в свою очередь, находится между двумя «щеками». Здесь имеется специальная ось, предназначенная для крепления якоря, который также набран из изолированных стальных пластин.

Читайте так же:
Масляный выключатель напряжением 110 кв

Во время поворота якоря остается зазор между ним и брусом. На данной оси между щеками также закреплен рычаг, воздействующий на подвижные контакты. Для воздействия на рычаг имеется специальная отключающая пружина, которая оттягивает его вправо. Рычаг, в свою очередь, соединен с размагничивающим витком при помощи гибкого проводника, выполненного из медной фольги. Параллельно этому же витку включается и индуктивный шунт.

У выключателя имеется и неподвижный контакт, который последовательным соединением крепится к катушке магнитного дутья. Для подключения к внешней цепи у БВ имеются два выводных контакта.

конструкция выключателя

Включение прибора на примере ВБ-11

Стоит отметить, что включение оборудование осуществляется в два шага. После включения устройства нажатием кнопки ВУ осуществляется подача напряжения по проводу 20 А на удерживающую катушку. ВО время протекания тока через этот элемент, будет создаваться поток, который обычно обозначается буквой Ф. Однако он является ослабленным. Это происходит из-за того, что он замыкается через воздушный зазор, имеющийся между полюсами электромагнита, так как якорь все еще не прижат к полюсам.

«Возврат защиты»

У автоматических выключателей имеется кнопка «возврат защиты», после нажатия которой начинается подача электрического питания на вентиль. В это же время сжатый воздух начинает поступать в цилиндры пневматического привода. Поршень одного из цилиндров будет подниматься, поворачивая тягу по ходу часовой стрелки. Из-за этого будет происходить растяжение отключающей пружины. Из-за того, что вместе с тягой вверх перемещаются и стержни, будет происходить вращение магнитопровода вокруг оси, но уже против часовой стрелки.

Вместе с перемещением первого поршня, в движение приходит и второй, перемещаясь вниз, под воздействием сжатого воздуха. У поршня имеется толкатель, который при перемещении вниз, будет воздействовать на контактный рычаг и якорь. Он будет осуществлять вращение якоря до тех пор, пока тот не прижмется к полюсам электрического магнита. В это же время между главными контактами все еще остается зазор. Это происходит из-за того, что дальнейший ход контактного рычага ограничивается магнитопроводом, повернутым ему навстречу. После этого удерживающий поток, ранее обозначенный как Ф, будет усиливаться, так как проходит через якорь, тем самым прочно удерживая его.

После этого кнопка «возврат защиты» отпускается, и практически вся система возвращается в исходное положение, кроме якоря, который остается плотно прижатым к полюсам. Магнитопровод будет отпущен, и начнет поворачиваться по часовой стрелке до тех пор, пока не замкнет главные контакты.

Быстродействующий выключатель БВП-5

Как и другие типы данного устройства, этот предназначается для разрыва цепи и ее защиты от КЗ. Что касается конструкции, то есть несколько основных частей: корпус, привод пневматического типа, КУ, удерживающее устройство электромагнитного типа, система гашения дуги, механизмы блокировки.

Прежде чем перейти к ремонту быстродействующего выключателя этого типа, необходимо полностью ослабить натяжение отключающих пружин. После этого можно перейти к съему пневматических пружин. После этого все подвижные части устройства будут освобождены от натяжения и их можно будет повернуть в любую сторону, удобную для ремонта.

Что касается поломок, то чаще всего это загрязнение мест соприкосновения якоря и магнитопровода, что устранить достаточно просто обычной очисткой. Иногда случается так, что происходит задевание рычага за стенки камеры гашения дуги.

Что касается ремонта самой дугогасительной камеры, то для этого обычно снимают деионные решетки, наружные стенки и ее внутренние перегородки. Решетка разбирается и тщательно очищается от нагара и окислов.

Быстродействующий выключатель электровоза

БВ отлично подходят для отключения тяговых двигателей при разнообразных их неисправностях. Они часто используются на электровозах. К примеру, на ЧС2 устанавливается такой тип БВ, как 12НС. Он имеется пневматический привод, а конструкция состоит из таких основных узлов, как несущая рама, отключающее реле автоматического контактного типа, устройство гашения дуги, пневмопривод, и блокировочные или же вспомогательные контакты.

Номинальное рабочее напряжение быстродействующего выключателя для электровоза такого типа — 3 кВ, а номинальный ток — 2 кА.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector