Ikea73.ru

IKEA Стиль
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Экскурсия на подстанцию 220/110/20

Экскурсия на подстанцию 220/110/20

Прежде чем электричество с электростанции попадает к нам в розетку, его напряжение сначала увеличивают до сотен тысяч вольт, а потом обратно понижают до 220В. Делают такие преобразования на трансформаторных подстанциях.

Самая главная характеристика подстанции — уровни напряжения по верхней и нижней стороне. То что написано в заголовке как раз и означает что на верхней стороне 220 тысяч вольт, а на нижнем два уровня напряжения 110 и 20 кВ. То есть по сути это две подстанции на одной территории. А в нашей розетке согласно классификации энергетиков 0,4кВ, это потому. что между фазами 400 вольт (раньше было 380 но стандарты давно поменялись).

Начинается подстанция с открытого распределительного устройства с инструктажа по технике безопасности, затем идем на верхнюю сторону подстанции в открытое распределительное устройство — ОРУ.

image

На общем плане видна ЛЭП, разъединители, элегазовые выключатели, и порталы с секциями шин.
Порталы это металлические конструкции над всем видимым хозяйством, а секцией шин называют часть схемы подстанции которую можно выключателями и разъединителями от остальной схемы отключить. Данная подстанция способна питаться с любого конца линии электропередач, а также может линию разъединить. Не знаю на счет именно этой ЛЭП, но в отличии от шнура питания вашего ПК, в котором ток всегда поступает из розетки, линии электропередач высокого напряжения по больше части включены в единую энергосистему и энергия по таким линиям может перетекать от разных источников (расположенных с разных сторон линии) к разным потребителям в разное время. Для этого все генераторы включенные в единую сеть работают строго синхронно.
Коммутации линии 220 кВ выполняются элегазовыми выключателями.

image

Элегаз или гексафторид серы закачивают в выключатели для лучшего гашения дуги при разъединении контактов. Все замечали искру в выключателе дома или в розетке при выключении вилки, — вот тот же принцип, но на много порядков больше. Бывают вакуумные, масляные выключатели, но самыми надежными на сегодня для такого уровня напряжения считаются элегазовые.

На фото я показал манометр, его видно с земли, чтобы работник мог диагностировать утечку газа. Данную модель выключателя при вытекшем газе выключать под нагрузкой нельзя — он разрушится.

Также на Российских подстанциях обязательно присутствуют разъединители:

image

Это по сути тоже выключатель, но полностью открытый, отключать разъединитель можно только без нагрузки. Нужен он для создания «Видимого физического разрыва» — это обязательное условие безопасного выполнения работ на объектах подстанции. То есть мало отключить элегазовым выключателем и заземлить, нужно чтобы был виден физический разрыв.

Выключатели и разъединители могут управляться как с пульта управления подстанцией, так и в ручную с помощью специальных рукояток.

Одно из интересных для электронщика устройств: высокочастотный заградитель

image

image

По сути катушка и конденсатор составляют LC — фильтр, который не пропускает в сеть высокочастотный сигнал. А высокочастотный сигнал идет с другой подстанции или электростанции, его частота в районе 40 кГц, и используется для передачи информации, в основном системой защиты и автоматики. Скорость передачи очень низкая, но надежность способа себя доказала десятилетиями и данный тип связи обязателен при построении подобных объектов. Мощность сигнала порядка 1кВ и его очень сложно технически исказить или заглушить.
Измерить напрямую токи и напряжения в таких сетях приборами невозможно, поэтому для работы автоматики и измерений используются трансформаторы. Трансформатор тока мы видели на картинке с элегазовым включателем, а трансформаторы напряжения выглядят так:

image

После преобразования получаем максимум 100 вольт или 5 ампер — на эти значения настроены все щитовые измерительные приборы и устройства РЗА (релейной защиты и автоматики). В отличие от стандарта промышленных контроллеров: 1-10В и 4-20мА, уровни в 100В и 5А гораздо устойчивее к помехам.

Еще одно устройство по верхней стороне — защита от перенапряжения:

image

При ударе молнии сопротивление варистора резко падает и сбрасывает лишнюю энергию в землю. И да срабатывает он на 190кВ, потому как в ЛЭП 220кВ каждая фаза относительно земли имеет потенциал меньше 190кВ.

А вот и сердце подстанции — автотрансформатор 250МВА (мегавольтампер):

image

Трансформатор имеет множество устройств обеспечения его работы и защиты. При пожаре тушится водой, хотя масло водой и не тушится, но если денег на пенохозяйство нет, и очень хочется то можно и водой. Используется система распылителей при работе которой вокруг трансформатора образуется облако пара и воды, которое перекрывает доступ кислорода и пожар прекращается.

Автотрансформатором он называется потому, что имеет соединение между первичной и вторичной обмотками как в ЛАТРе — и считается, что КПД у него выше чем у классического трансформатора.
Данный трансформатор имеет две вторичные обмотки 110 и 10. Обмотка 10 кВ используется только для обеспечения собственных нужд. Как показала практика, если обмотку 10Кв нагрузить по номиналу, то образуются не предусмотренные электромагнитные поля и болты, которыми прикручено дно трансформатора начинают светиться.

Нагрузка в сети не постоянная и данный трансформатор обеспечивает еще и регулировку напряжения под нагрузку

image

Ручку можно крутить только во время ремонта и настройки, в рабочее время — только электропривод и автоматика.

На всей высокой стороне (высокой кстати называют ее по уровню напряжения, физически все в одной плоскости) постоянно слышен треск разрядов и это довольно быстро утомляет.
После автотрансформатора начинается низкая сторона с уровнем напряжения 110
Здесь все тоже самое: открытое распредустройство, выключатели, порталы, секции шин…

image

Разъединители и выключатели:

image

И электроэнергия отправляется на другие подстанции

Но есть еще и вторая низкая сторона, начинается после трансформатора 110/20

Трансформатор поменьше, система охлаждения пассивная, это уже классический трансформатор, а не автотрансформатор. Но все системы осушения масла и воздуха, защиты тоже присутствуют. На стороне 110 тишина, треска разрядов совсем нет.

Самая низкая сторона подстанции — 20кВ. представлена ЗРУ — закрытым распределительным устройством

Если на ОРУ 220 кВ ближе 4-х метров к токоведущим частям приближаться запрещено, то в ЗРУ 20кВ можно спокойно прикасаться к оборудованию

Все закрыто, промаркировано, управляется с пульта или вручную, открыть просто так ячейку невозможно — все блокируется автоматикой.

Для ремонта ячейки выкатываются на таких тележках:

Для контроля и управления используются отечественные контроллеры:

Далее напряжение 20кВ поступает в местные подстанции по подземным кабелям. Сети напряжением выше 0,4кВ изолированы от земли (ну не совсем 100% но привычного нуля в таких сетях нет). При пробое на землю ток все-таки течет, но воспринимается как обычное потребление, а дуга при этом портит изоляцию кабеля и в конечном счете приводит к его повреждению и межфазному замыканию. Чтобы это предотвратить придумали специальную систему:
На три фазы кабеля ставят трансформатор со средней точкой, и при равной нагрузке на фазы напряжение в средней точке относительно земли равно нолю, а при замыкании на землю напряжение возрастает и является индикатором проблемы. Для определения конкретного кабеля. в котором произошло замыкание используют большие резисторы.

Читайте так же:
Как правильно открыть выключатель

Также существуют дугогасящие катушки, которые позволяют компенсировать разность потенциалов, погасить дугу, и по рассказам иногда изоляция затягивается и ремонта кабеля не требуется.

Главный пульт подстанции:

на шкафах нарисована схема подстанции и элементы управления вписаны в схему — перед входом строго напомнили никакие ручки не крутить и ничего не нажимать. За пультом куча шкафов с системами питания переменного и постоянного тока (вся защита работает на полностью автономной сети постоянного тока), систем сигнализации, пожаротушения и т.п. Все закрыты.
Вот так выглядит устройство высокочастотной связи, то самое, что подключено до высокочастотного заградителя и общается с себе подобными на других подстанциях.

В заключении нас пустили в зал телеметрии и РЗА: Ожидал чего-то интересного, но зал был заполнен закрытыми шкафами с непонятными аббревиатурами. Времени уже не оставалось и расспросить подробности не удалось.

Вот так выглядит один из шкафов, где что-то видно:

На фото универсальные преобразователи уровней, которые преобразуют 100В 5А в 24В 20мА
Часть РЗА собрано на механических реле, часть на логических контроллерах. Вся информация выводится на рабочее место диспетчера на экране ПК, откуда может и управляться. Также вся информация поступает на центральный диспетчерский пункт сетевой организации.

На этом наша экскурсия закончилась, сдали каски и еще раз со стороны взглянув на ОРУ, в сопровождении охраны покинули территорию.

С точки зрения меня как ИТ-шника, подходы к защите, блокировкам, управлению, контролю организованы на высшем, можно сказать «железном» уровне — вполне можно позаимствовать при построении информационных систем.

Рекомендации по контролю технического состояния масляных баковых выключателей 110-220 кВ и приводов № обп. 040-2010

У-220-1000/2000-25У1; У-220-2000-40У1, выпущенных заводом УЭТМ в 7080 годы прошлого века.

Для помощи в обслуживании и проверки состояния перечисленных выключателей в данных «Рекомендациях по контролю технического состояния масляных баковых выключателей 110-220 кВ и приводов» приведены их основные характеристики и указания по эксплуатации. Также в разделе 4 «Рекомендаций…» описаны методы регулировки выключателей и приводов, способы устранения неисправностей и методы проверки параметров, в том числе с применением появившихся в последние годы новых приборов.

Следует заметить, что «Рекомендации…» являются вспомогательным документом.

Для перечисленных выключателей и приводов к ним основными документами, которыми следует руководствоваться в процессе эксплуатации, являются «Технические описания (ТО)» (инструкции по эксплуатации) завода-изготовителя:

2СЯ.025.056 ТО-Выключатель высоковольтный трехполюсный МКП-110Б-1000/630-20У1;

2СЯ.025.010 ТО-Выключатель высоковольтный трехполюсный У-110-2000-40;

2БП.025.025 ТО- Выключатель высоковольтный трехполюсный У-110-2000-50;

2СЯ.025.055 ТО- Выключатель высоковольтный трехполюсный У-220-1000/2000-25;

2СЯ.025.040 ТО- Выключатель высоковольтный трехполюсный У-220-2000-40.

0СЯ.140.059 — Приводы электромагнитные ШПЭ-44-У1, ШПЭ-44-II, ШПЭ-46, ШПЭ-44ХЛ; 0СЯ.140.066 — Приводы пневматические серии ШПВ;

2СЯ.025.056 ТО — Выключатель высоковольтный трехполюсный МКП-110Б-1000/630-20У1 в части привода ШПЭ-33.

2 Осмотры и проверки, рекомендуемые для контроля технического состояния выключателей и приводов в процессе эксплуатации.

2.1 Общие указания по эксплуатации и контролю технического состояния.
2.1.1 При эксплуатации необходимо следить за своевременным включением и отключением устройств обогрева привода. Несвоевременное отключение устройств обогрева приводов может привести к стеканию смазки с подвижных частей, что приведет к ухудшению механических характеристик (не исключены и отказы в работе) и нарушению изоляции. Включение и отключение устройств обогрева должны соответствовать требованиям «Технических описаний»

2.1.2 Следует следить за наличием смазки на сердечнике электромагнита включения привода (смазка плюс графит). Высохшую смазку удалить и нанести свежую.

2.1.3 Визуальным осмотром контролировать состояние пружин силового механизма привода (на отсутствие поломок).

2.1.4 При осмотре пневмоприводов необходимо проверять величину давления и отсутствие течи воздуха в трубопроводах и в соединениях.

2.1.5 Необходимо периодически, один-два раза в месяц, а при резких колебаниях температуры окружающего воздуха и чаще, удалять конденсат из резервуара пневмоприводов.

2.1.6 Необходимо осматривать состояние крепежных и стопорных элементов привода,

состояние упорных и предохранительных болтов механизма отключения и соответствие зазоров механизма нормам, указанным в «Техническом описании» на привод.

2.1.7 Необходимо проверять соответствие положения и зазоров быстродействующих контактов КБВ и КБО требованиям «Технического описания» на привод.

2.1.8 Проверять состояние креплений бака и привода выключателя. Ослабление крепежа не допускается.

2.1.9 Проверять плотность закрывания дверей шкафа привода.

2.1.10 Проверять состояние покраски шкафа привода и отсутствие подтеков масла из баков.

2.1.11 Необходимо производить контроль уровня масла в баках и вводах по маслоуказателям. Уровень масла должен быть в пределах шкалы маслоуказателей.

2.1.12 Проверять соответствие указателей положения выключателя его действительному состоянию.

2.1.13 Необходимо осматривать и подтягивать контакты в местах присоединения ошиновки к выключателю.

2.1.14 Рекомендуется для предотвращения внутрибаковых перекрытий при подготовке к зимнему сезону, а также весной: сливать из баков скопившийся конденсат и шлам и проверять масло на электрическую прочность. Для предотвращения проникновения и накопления воды в баках необходимо проверять уплотнения в верхней части баков: места крепления механизмов и крышек.

В выключателях, у которых сливная труба выведена не из самой нижней части бака, на дне бака может скапливаться несливаемый объем, который может служить источником образования льда. В таких выключателях противоаварийным циркуляром №Э-5/70

Главтехуправления Минэнерго от 14 апреля 1970г. рекомендовалось из нижней части бака выводить дополнительную сливную трубу.

2.2 Рекомендуемые ежегодные проверки и испытания
Не реже одного раза в год рекомендуется проводить проверку технического состояния выключателей и приводов в объеме, оговоренном табл.1.

Приложение 1 п.34ТО на выкл.

11.1 Проверка загрязненности наружных

поверхностей фарфоровых покрышек

11.2 Измерение угла диэлектрических потерь ( tgδ)

11.3 Определение пробивного напряжения

разделах «Монтаж» и «Наладка выключателей» «Технических описаний», перечисленных в разделе «Введение». Уточнения по некоторым методам проверок и испытаний описаны в разделе 4 настоящих рекомендаций, на которые даны ссылки в табл.1 и 2.

2.3 Осмотры и проверки после отключения токов короткого замыкания

(30%-100% от Iном.).
После отключения коротких замыканий рекомендуется производить внеочередные осмотры выключателей.

При этом производится наружный осмотр выключателей и проверяется:

Читайте так же:
Выкатная тележка выключателя обозначение

а) уровень масла в баках и маслонаполненных вводах: уровень масла должен быть в пределах шкалы маслоуказателей;

б) состояние вводов и баков: отсутствие видимых дефектов, трещин, течи масла;

в) наличие или отсутствие следов выброса масла из газоотводов;

г) целостность предохранительных клапанов;

д) отсутствие оплавлений на ошиновке, вводах и верхней части выключателя;

е) отсутствие треска и шума внутри бака, отсутствие короны и разрядов на вводах;

ж) состояние креплений бака и привода: ослабление крепежа не допускается;

з) отсутствие чрезмерного нагрева контактных соединений;

и) состояние заземляющей проводки, заземляющая проводка должна быть целой.

При обнаружении повреждений, треска и шума, несоответствия уровня масла выключатель вывести из работы для установления и устранения дефектов.

3 Проверки, рекомендуемые для контроля технического состояния выключателей и приводов после ремонта в связи с выработкой выключателем коммутационного или механического ресурса,

или в связи с внеочередными ремонтами

3.1 Ремонт выключателей и приводов должен быть проведен в соответствии с требованиями «Технических описаний» соответствующих изделий.

3.2 Основная масса масляных баковых выключателей 110-220 кВ выработала свой срок службы, в связи с чем при их эксплуатации возможно ухудшение свойств и характеристик, как металлических, так и изоляционных деталей и узлов выключателей и приводов, поэтому

рекомендуется замена изношенных узлов и деталей выключателей, особенно изоляционных (в частности, штанг подвижных контактов).

3.3 В ходе ремонта должны быть оформлены акты, протоколы испытаний и проверок, недоступных для визуального контроля деталей и узлов, например, дугогасительных устройств, направляющих устройств, внутрибаковой изоляции, штанг подвижных контактов. Рекомендуется также провести анализ состояния перечисленных узлов путем сравнения с нормами и данными предыдущих испытаний и проверок.

3.4 После проведения ремонта необходимо:

— провести визуальный наружный осмотр состояния выключателя — при этом не должно быть подтеков масла из баков выключателя и не нарушена покраска баков и шкафа привода;

— проверить уровень масла по маслоуказателю: уровень масла должен быть в пределах шкалы;

— провести осмотр угловых коробок и приводного механизма со снятием крышек (жгут проводки от трансформаторов тока с намотанной на него лентой должен иметь надежное уплотнение в местах прохода проводки через стенку механизма, см. раздел « Монтаж» «Технического описания» на выключатели);

— проверить правильность расположения маслоуказателей вводов: маслоуказатели вводов должны быть расположены сбоку при осмотре со стороны ввода;

— проверить легкость хода и уплотнение дверей шкафа привода;

— проверить уплотнение кабельных вводов: уплотнение должно быть плотным.

— проверить работу обогрева выключателя и привода (см. Приложение 1 п.39);

— проверить состояние стопорных и упорных болтов привода: болты должны быть застопорены;

— проверить состояние и работу блок-контактов против «прыгания»: блок-контакты должны быть без повреждений;

— проверить соответствие положения и зазоры быстродействующих контактов КБВ и КБО : положения и зазоры контактов КБВ и КБО должны соответствовать требованиям «Технического описания» привода.

— проверить наличие и состояние смазки привода и механизма выключателя: трущиеся поверхности должны быть смазаны. Смазка должна быть невысохшей.

а) влажность подаваемого воздуха в резервуар пневмопривода, которая должна быть не более 50%;

б) состояние магистрали: внутри магистрали и арматуры не должно быть грязи, также не должно быть механических повреждений;

в) состояние электроконтактных манометров: манометры должны быть в исправном состоянии и поверенные.

— особое внимание при осмотре выключателя и привода требуются обратить на состояние крепежных деталей, состояние тяг, осей и валов, на отсутствие деформаций рычагов и на целостность пружин привода.

3.5 Основные виды проверок технического состояния выключателей и приводов после ремонта в связи с выработкой выключателем коммутационного или механического ресурса,

Схемы и основное электрооборудование главных понизительных подстанций

Главные понизительные подстанции, питающие крупные промышленные предприятия, включают в себя распределительные устройства на напряжение 35. 220 и 6 (10) кВ, главные трансформаторы на напряжение 35. 220/6 (10) кВ, трансформаторы собственных нужд на напряжение 6 (10)/0,4 кВ, конденсаторные батареи напряжением 6 (10) кВ, щиты управления электроснабжением, мастерские и т. д.

На ГПП, как правило, устанавливают два одинаковых трансформатора на 35. 220/6 (10) кВ. Необходимость двух трансформаторов обусловлена тем, что на современных промышленных предприятиях преобладают нагрузки второй категории и обычно имеются нагрузки первой категории, для питания которых необходимо иметь два независимых источника. Установка более двух трансформаторов неэкономична и применяется в основном лишь при расширении предприятия. Главные понизительные подстанции размещают вблизи центра нагрузки.

При установке на ГПП двух трансформаторов, питаемых от разных линий электропередачи, создаётся возможность применения надёжных и высокоэкономичных упрощённых схем: блока линия 35. 220 кВ — трансформатор ГПП и блока линия на 35. 220 кВ — трансформатор ГПП — токопровод на 6 (10) кВ. Эти схемы не содержат сборных шин и выключателей на стороне первичного напряжения ГПП, а на стороне вторичного напряжения 6 (10) кВ обычно имеют одиночную секционированную систему шин или токопроводы от каждого трансформатора. Одно- трансформаторные ГПП можно применять при наличии возможности обеспечить резервное питание нагрузок первой и второй категорий по сети напряжением 6 (10) кВ от соседних подстанций или ТЭЦ. Экономичность этих схем и индустриализация монтажа подстанций возросли в связи с изготовлением последних на заводе в виде блочных подстанций типа КТПБ.

На рис. 1 приведена схема ГПП напряжением 35. 220/6 (10) кВ для предприятия средней мощности, получающего электроэнергию от энергосистемы по двум радиальным линиям BЛ1 и BЛ2. Трансформаторы Т1, Т2 подключают к линиям только через разъединители QS1, QS2 РЛНД (разъединитель с линейным контактом, наружной установки, двухколонковый), так как при радиальной схеме нет необходимости в отделителях. Перемычка между цепями напряжением 35. 220 кВ, позволяет питать каждый трансформатор не только от своей, но и от другой линии. По условиям ремонта в перемычку включают последовательно два разъединителя (на схеме QS3, QS4). Согласно СН 174-75, следует применять в основном схему без перемычки напряжением 35. 220 кВ, но допускается использование её в тех случаях, когда по условиям работы ГПП возникает необходимость в питании двух трансформаторов от одной линии, например при загрузке трансформаторов свыше 70 %, когда при отключении одного из них нагрузка другого превышает 140%.

Электрические сети. Схема

Рис. 1. Схема ГПП напряжением 35. 220/6 (10) кВ с секционированной системой шин на стороне напряжения 6 (10) кВ

На вводах к трансформаторам устанавливают короткозамыкатели QK1, QK2: в сетях с глухозаземлённой нейтралью — в одной фазе, в сетях с изолированной нейтралью — в двух. Короткозамыкатель автоматически включается при срабатывании релейной защиты в результате внутренних повреждений в трансформаторе ГПП, к которым нечувствительна защита с помощью головных выключателей линий BЛ1 и ВЛ2 энергосистемы. При включении короткозамыкателя создаётся искусственное короткое замыкание на входах высшего напряжения (ВН) трансформатора. На такое короткое замыкание реагирует релейная защита линии в системе и отключает соответствующую линию.

Читайте так же:
Автоматические выключатели трехполюсный 40а schneider electric

Двухобмоточные трансформаторы ГПП имеют схему соединения обмоток У/Д-11 или У0/Д-11. Включение нейтралей трансформаторов 110. 220 кВ на землю осуществляется через однополюсные разъединители QS5, QS6 типа ЗОН. Последние включают не всегда. Число включенных на землю нейтралей регулируют так, чтобы ток одно- и двухфазного коротких замыканий на землю не превышал установленные пределы. Для защиты изоляции трансформаторов от пробоя при возникновении перенапряжения в период работы с заземлённой нейтралью предусмотрены разрядники FV2, FV3 в нейтрали. Кроме того, разрядники устанавливают на вводе ВН трансформаторов во всех трёх фазах для защиты от набегающих по линиям волн перенапряжений (на схеме FV1, FV4).

Трансформаторы ГПП подключают к сборным шинам вторичного напряжения 6 (10) кВ через масляные выключатели QF1 и QF2 и разъединители QS7 и QS8. Если требуется ограничение тока короткого замыкания в сети предприятия напряжением 6 (10) кВ, то между выключателями и разъединителями ввода включают трёхфазные бетонные реакторы LR1, LR2.

На рис. 2 показаны схемы подключения вводов трансформаторов ГПП к сборным шинам распределительного устройства напряжением 6 (10) кВ. Схему а применяют при установке трансформаторов мощностью до 25 MB•А. При большей мощности трансформаторов обычно требуются мероприятия по ограничению токов короткого замыкания. При мощности трансформатора 40 MB•А применяют схемы бив, при мощности 63 MB•А рекомендуются схемы гид. Если же мощность трансформатора достигает 80 MB•А, то применяют схемы е, ж, з.

К вводам подключаются трансформаторы собственных нужд подстанции для обеспечения питания приёмников собственного расхода, в том числе приводов масляных выключателей, независимо от состояния сборных шин напряжением 6 (10) кВ ГПП.

Сборные шины напряжением 6 (10) кВ распределительных устройств ГПП секционируют выключателем. Благодаря этому при повреждении или ремонте сборных шин отключается только одна секция и все основные электроприёмники получают питание от другой секции. При внезапном исчезновении напряжения на одной секции, например при отключении питающей линии, с помощью устройств АВР включается секционный выключатель, обеспечивая питание секции. Секционный выключатель выбирают по нагрузке одной секции шин, а выключатель ввода трансформатора — по нагрузке двух секций в послеаварийном режиме ГПП. Для ограничения токов короткого замыкания секционный выключатель нормально отключен.

Схема ГПП предприятия средней мощности, получающего электроэнергию по отпайкам от двух магистральных линий. В этом случае необходимы отделители QR1, QR2 для отключения поврежденного трансформатора ГПП от магистрали. Отключение отделителя происходит автоматически в период бестоковой паузы между моментом отключения головного выключателя магистрали после включения короткозамыкателя (QK1, QK2) и моментом повторного включения головного выключателя линии под действием устройств АГ1В.

Трансформаторы мощностью 25 MB•А и более имеют расщепленную вторичную обмотку. Расщепление обмотки представляет собой эффективный способ ограничения токов короткого замыкания в электросети предприятия. Для этой же цели применяется групповое реактирование обычными и сдвоенными реакторами, включаемыми в цепь выводов трансформатора. Применявшееся ранее индивидуальное реактирование каждой отходящей линии не рекомендуется по соображениям компоновки и экономии оборудования.

Электрические сети. Схема

Рис. 2. Схема ГПП напряжением 35. 220/6 (10) кВ с четырьмя секциями сборных шин напряжением 6 (10) кВ:

ТСН1, ТСН2 — трансформаторы собственных нужд; TV1—TV4 — трансформаторы напряжения.

В схеме, показанной на рис. 2, каждая вторичная обмотка обоих трансформаторов подключена к отдельной секции шин напряжением 6 (10) кВ. Все четыре секции одной системы сборных шин работают раздельно, но при выходе из работы одного трансформатора вся нагрузка автоматически переводится на другой включением секционных выключателей QB1 и QB2 под действием устройств А В Р. В распределительном устройстве данной подстанции установлены ячейки КРУ с масляными выключателями QF типа ВМП напряжением 6(10) кВ. Выкатные масляные выключатели имеют втычные контакты, поэтому нет необходимости в разъединителях. Конденсаторные батареи, измерительные трансформаторы напряжения предусматриваются на каждой секции шин, так как их режим регулируется самостоятельно и напряжения секций могут существенно различаться.

Если передаваемая от одной секции мощность составляет 25 MB•А и более, а потребители расположены по одной трассе, то эффективно применение магистральной схемы питания с токопроводами. Шинные и гибкие токопроводы напряжением 6. 10 кВ выполняют одновременно роль сборных шин и распределительных линий.

Рассмотренные примеры не отражают всего многообразия схем ГПП, применяемых на разных предприятиях. Так, для открытых подстанций напряжением 35 (110) кВ, не имеющих нагрузок первой категории, с трансформаторами мощностью до 6300 кВ•А применяются схемы с разъединителями и стреляющими предохранителями напряжением 35 (110) кВ на вводе ВН. При этом отпадает необходимость в выключателях или отделителях с короткозамыкателями на стороне первичного напряжения подстанции.

При сооружении мощных ГПП на небольшом (несколько километров) расстоянии от районных подстанций или электростанций можно отказаться от установки каких-либо коммутационных аппаратов (за исключением разъединителей) на вводе напряжением 35. 220 кВ к главным трансформаторам. Функции защиты и отключения трансформаторов, так же как и линий, передаются головному выключателю питающей ГПП линии. При срабатывании релейной защиты трансформатора ГПП отключающий импульс передается на головной выключатель линии по высокочастотным каналам или специально построенной для этого линии связи.

Если подстанция сооружается в зоне повышенного загрязнения, то следует применять самые простые схемы коммутации с минимально возможным количеством аппаратуры и изоляции наружной установки. Рационально использование в таких условиях трансформаторов с кабельными вводами линии непосредственно в бак трансформатора. Тогда вообще отпадает необходимость в открытой изоляции. При этом защиту следует осуществлять с передачей отключающего импульса на головной выключатель линии. В отдельных случаях выгоднее строить закрытые распределительные устройства (ЗРУ) напряжением 35 (110) кВ. Открытые распределительные устройства (ОРУ) напряжением 35. 220 кВ в условиях загрязнения делают с усиленной изоляцией. В ОРУ напряжением 35 кВ в загрязненной среде ставят изоляторы на напряжение 110 кВ, а в ОРУ напряжением 110 кВ — изоляторы напряжение 150. 220 кВ. Не рекомендуется в зонах загрязнения применять комплектные распределительные устройства наружной установки (КРУН) напряжением 6 (10) кВ, так как они не обеспечивают достаточной защиты изоляции от загрязнения газами, аэрозолями, пылью.

Согласно СН 174-75, при напряжении 110 кВ и выше в условиях нормальной окружающей среды применяют открытые под станции, а при напряжении 35 кВ — как открытые, так и закрытые. В условиях повышенного загрязнения, а также на Крайнем Севере рекомендуется применение ЗРУ напряжением 35. 220 кВ с открытой установкой трансформаторов при усиленной изоляции вводов.

Читайте так же:
Как установить ограничитель перенапряжения с вакуумным выключателем

Электрические сети. Схема

Рис. 3. Конструктивная схема открытой понизительной подстанции напряжением 110/6 кВ:

1 — линейный разъединитель; 2 — отделители; 3 — линейный портал; 4 — ошиновка; 5 — вентильные разрядники; 6 — трансформаторный портал; 7 — короткозамыкатели; 8 — заземляющий разъединитель нейтрали; 9 — молниеотвод

На рис. 3 приведена конструктивная схема открытой подстанции напряжением 110/6 кВ без выключателей с применением короткозамыкателей и отделителей.

В ОРУ напряжением 35. 220 кВ все электрооборудование выбирается для наружной установки и монтируется по условиям безопасности обслуживания на высоте 2,5 м над уровнем земли. Выше располагаются сборные шины ОРУ. Третий ярус образуют переходы над сборными шинами и проводами отходящих линий. Поэтому на ОРУ требуется довольно много высоких стальных опор для сооружения порталов, молниеотводов и металлических конструкций для изготовления искусственного заземляющего устройства.

Электрические сети. Схема

Рис. 4. Общий вид однотрансформаторной подстанции типа 1КТГ1 110/6 (10) кВ с короткозамыкателем и отделителем:

1 — ограждение; 2— разъединитель; 3 — отделитель; 4— разрядник; 5— молниеотвод; 6 — трансформаторный кронштейн; 7 — силовой трансформатор; 8 заземляющий разъединитель: 9 — шкафы КРУН

Значительная экономия территории и материалов получается в случае применения блочных подстанций напряжением 35 (110) кВ типа КТПБ с ОРУ типа КРУБ.

Разработаны закрытые подстанции без выключателей на стороне ВН и с закрытой установкой трансформаторов мощностью 2 х 25 и 2 х 40 М•ВА. На таких подстанциях предусмотрена вентиляция камер, шумоглушение.

Главные понизительные подстанции следует располагать как можно ближе к центру нагрузки, насколько это позволяют планировка предприятия, подвод воздушных линий и состояние окружающей среды.

На рис. 4 приведён общий вид однотрансформаторной подстанции типа 1КТП-110/6 (10) кВ с короткозамыкателем и отделителем на стороне ВН. Подстанция представляет собой ОРУ напряжением 110 кВ, комплектуемое короткозамыкателем, отделителем, разрядником, трансформаторами типов ТМН-2500/1 10, ТМН-6300/110, ТД-10000/110, ТД-16000/110, ТД-25000 и КРУН из шкафов серии К-33, К-34, К-38 с выключателями типа ВМП-10.

Трансформаторные подстанции типа КТП-35/6 (10) кВ выполняют с одним или двумя трансформаторами. По типу аппарата, установленного на стороне ВН, различают подстанции со стреляющими предохранителями, с короткозамыкателями и отделителями, с масляными выключателями.

Электрические сети. Схема

Рис. 5. Общий вид (а) и план (б) передвижной подстанции напряжением 35/6 кВ в блочном исполнении:

1 — блок высокочастотной телефонии; 2 — блок ввода напряжения 35 кВ; 3 — блок силового трансформатора; 4 — блок РУ напряжением 6 (10) кВ; 5 — блок- батарей статических конденсаторов

Выпускаются и передвижные КТП напряжением 35/6 кВ мощностью 2×4000 кВ•А в блочном исполнении (рис. 5).

Описание, виды и перемещение трансформаторов тока 110 кВ

Силовой трансформатор

Силовой

Трансформатор – главная часть схемы подачи электроэнергии. Его основная функция – перевод мощности из одной системы подачи тока в другую.

Описание

Трансформатор тока 110 кВ выполнен в форме прямоугольника, где наверху размещается корпус, выполненный из металла. Крепится он на изолятор опорного типа, который монтируется на основную часть. В ней находится пульт для вторичных обмоток. Главная обмотка расположена непосредственно в корпусе, там же где и её вывод. Внутренняя часть корпуса полностью обрабатывается газом, который играет роль изолятора.

При монтировании первичной обмотки следует отталкиваться от коэффициента трансформации. Он необходим для корректировки витков, используя соединение последовательно-параллельного типа.

Обмотки второго уровня размещаются в экране электрической статики, которые помогают нормализовать магнитное поле внутри конструкции. Главная часть выполнена из сплава железа и нанокристаллов, защитные элементы – сталь анизотропного типа.

Различают такие виды трансформаторов переменного тока на 110 кв:

Масляный трехфазный двухобмоточный с мощностью 25000 кВА

Имеет защитные модели для регулировки напряжения и температуры, в зависимости от нагрузки. Рекомендуется использовать в схемах общего применения. Подходит для мест с умеренным климатическим поясом, и для работы в отрытом пространстве. При установке необходимо обратить внимание:

  • Устанавливается на высоте не более 1 км от уровня моря.
  • Температурный показатель должен быть от -45°С до +40°С.

Конструкция включает в себя:

  • активная часть, которая расположена в емкости со специальной жидкостью;
  • контрольный элемент мощности для системы нагрузки (РПН);
  • расширитель входных процессов (ВН – 110 кВ, для нулевой подачи – 35 кВ, вводный НН – 11кВ);
  • охлаждающий элемент класса Д;
  • защитные комплектующие (два маслоуказателя стрелочного типа);
  • два типа реле (струйное и газовое);
  • клапан для предохранения
  • датчик температур для верхнего слоя масла;
  • фильтр из термосифона, с помощью которого удаляется влага из масла;
  • элемент для сушки воздуха;
  • кабели соединения.

Технические характеристики трансформатора тока 110 кв

Обладает мощностью в 25 тысяч потребляемой мощности (кВА) и частотой работы в 50 Гц. Напряжение трансформатора для ВН-115, а для НН – 11 кВ. Процент движения холостого тока не поднимается выше 0,55. Использует продольно-поперечный вид движения, с шириной колеи до двух метров. Общая масса составляет 49,2 тонны, масса основной части – 25 тонн. Срок эксплуатации – 25 лет. Размер конструкции – 6,1 м, ширина – 4,3 м и высота примерно 5,38 метров.

Трехфазный, двух обмоточный с мощностью 10000 кВА

Этот вид предназначен для общего назначения и является статическим. Применяется в климатической зоне умеренного типа при наружной установке. Уровень климатического исполнения – У.

Элементы, входящие в конструкцию:

  • масляный указатель для расширителя;
  • клапан предохранения;
  • каретки с системой поворота;
  • радиатор с наличием вентиляции;
  • элементы контроля и измерения масла (устанавливается при наличии масло проводимости навесной системы охлаждения);
  • пульт для контроля системы нагревания;
  • защитное и газовое реле;
  • трубы для отвода газа;
  • термометры для манометрического сигнала;
  • устройство ввода;
  • элементы фильтрации;
  • трансформаторное масло;
  • элементы для сушки воздуха;
  • табличка.

Трехфазный, двух обмоточный с мощностью 6300 кВА

Имеет систему регулировки напряжения при нагрузке в 25%, система охлаждения типа М. Служит для изменения переменного тока в электросетях

  • расширительный элемент;
  • нейтраль ВН;
  • разъемы для открытия составных частей;
  • подъемная скоба;
  • коробка с клеммами;
  • регулятор для слива масла;
  • подъемный элемент;
  • отверстие для оценки качества масляного раствора;
  • каретки;
  • масляный разъем;
  • РПН;
  • контроллер для масла;
  • радиатор.

Трехфазный, двух обмоточный 2500 кВА

Используется для активного движения воздушных потоков. Обладает системой контроля при большой нагрузке.

Имеет схожие комплектующие, как и предыдущая модель.

Перемещение трансформатора

Трансформатор комфортно перемешать, так как он имеет 4 каретки для поворота. При этом процессе входы высокого напряжение следует монтировать на фланцы, где находятся трансформаторы тока. Нижние элементы ограждаются бакелитовой зашитой, корпус – экранами для распределения электрического поля.

Читайте так же:
Аварийный выключатель vcf3 63а

Альтернативные виды

В качестве альтернативы используются выносные трансформаторы тока 110 кв.
Применяются при потенциальной опасности повреждения цепи от главного элемента до выключателя.

Устанавливаются сзади выключателя, располагаясь со стороны подключения. Подключение происходит путем токопровода с закрытым комплектом.

Такой способ служит дополнительной защитой для устройства и защищает его шины от дифференциации.

Выключатель масляный ВМГ-133

Опубликовано в рубрике Масляные выключатели Теги: масляный выключатель

Масляный выключатель ВМГ-133

Назначение

Масляные выключатели ВМГ-133 предназначены для коммутации под нагрузкой электрических цепей трехфазного тока с номинальным напряжением 10 кВ и применяются для внутренней установки в ЗРУ на ячейки КСО и КТП типа К-42. Выключатели маломасляные горшковые ВМГ133 относятся к типу малообъемных и выпускаются в следующих исполнениях: ВМГ-133-II напряжением до 10кВ, 600А, 350 мВА; ВМГ-133-III напряжением до 10кВ, 1000А, 350 мВА.

Конструкция выключателя ВМГ-133

Выключатель ВМГ-133 (смотри рисунок ниже) установлен на стальной сварной раме. Для крепления выключателя к стене или конструкции в углах рамы имеются четыре отверстия 0 18 мм (болты 0 16 мм). К нижней связи рамы болтами диаметром 12 мм прикреплены три сдвоенных опорных изолятора, на которых подвешены цилиндры выключателя, заполненные трансформаторным маслом до верхней черты маслоуказателя.

На дне цилиндра расположены розеточные контакты, от которых имеется вывод — болтовой контакт для присоединения шин. На головке проходного изолятора цилиндра закреплен контактный угольникдля присоединения шин и гибкий связи с колодкой, надеваемой на подвижный контактный стержень. В верхнюю часть рамы пропущен вал ф 32 мм с приваренными к нему тремя двуплечими рычагами.

Вал выведен по обе стороны рамы для установки рычага. К длинным плечам рычагов через фарфоровые тяги подвешены контактные медные стержни, имеющие на нижних концах съемные наконечники. Стержни свободно входят через проходные изоляторы в цилиндры выключателя.

Включение и отключение выключателя ВМГ-133

Включение выключателя осуществляют поворотом вала. При этом длинные плечи рычагов перемещаются вниз и контактные стержни входят в розеточные контакты, установленные на дне цилиндра. Розеточный контакт состоит из шести сегментов, которые прижимаются пружинами к центру. Когда цилиндрический подвижный контактный стержень входит в отверстие розеточного контакта, он отжимает сегмент и сжимает пружины. Ток проходит через контактный угольник — гибкую связь — контактный стержень — розеточный контакт — болтовой контакт под дном цилиндра.

34[1]

Отключение выключателя производится под действием двух пружин, работающих на растяжение. Пружины прикреплены к коротким плечам двух крайних рычагов. При расцеплении защелки привода пружины поворачивают рычаги вместе с валом выключателя на угол около 52°, длинные плечи рычагов движутся вверх и контактные стержни выходят из розеточных контактов. Возникшая дуга гасится в дугогасительной камере цилиндра.

Для смягчения ударов при включении выключателя и создания необходимой скорости в момент выхода контактного стержня из розеточного контакта при отключении выключателя в верху рамы установлен пружинный буфер, в головку которого во включенном положении упирается конец короткого плеча среднего рычага, сжимая пружину буфера. Пружинный буфер прикреплен к верхней связи рамы выключателя. Для смягчения ударов при отключении выключателя установлен масляный буфер, заполненный трансформаторным маслом, верхний уровень которого должен быть на 10 мм выше поршня.

Применение и устройство выключателя ВМГ-133

В городских электрических сетях выключатели ВМГ-133 используют трех видов: ВМГ-133-1, ВМГ-133-Н на 600А и ВМГ-133-1П на 1000А. Выключатели ВМГ-133-1 рассчитаны на предельно отключаемую мощность 200 МВА, ВМГ-133-1П и ВМГ-133-1Н — на 350МВА.

Выключатель ВМГ-133-1 (смотри рисунок ниже) с упрощенной конструкцией маслоотделителя без дополнительного резервуара для масла в отличие от ВМГ-133-1П имеет более простое дугогасительное устройство.

В выключателе ВМГ-133-1П для увеличения объема масла к цилиндру 3 приварен дополнительный резервуар, который сообщается с ним через обратный клапан. При повышении давления в цилиндре в момент отключения этот клапан закрывает отверстие, соединяющее цилиндр с дополнительным резервуаром, что предохраняет резервуар от действия высокого давления. Дополнительный резервуар имеет внутреннюю полость (в последних выпусках выключателей отсутствует), сообщающуюся с дугогасительной камерой. Надкамерная полость цилиндра, не заполненная маслом, сообщается с окружающей средой через отверстие в стальном цилиндре и маслоотделитель, приваренный к верхней части цилиндра. Масло, попавшее в маслоотделитель, стекает в цилиндр через соответствующее отверстие. В верхней части цилиндра имеется отверстие для заливки масла, в дне цилиндра — отверстие для спуска масла.

Внутри стального цилиндра выключателя помещены бакелитовые цилиндры и. Цилиндр изолирует внутренние стенки металлического цилиндра от токоведущего стержня и прижимает сверху дугогасительную камеру. Цилиндр является опорным для дугогасительной камеры и изолирует внутренние стенки цилиндра от розеточного контакта. Стальной цилиндр закрыт чугунным фланцем — крышкой с проходным изолятором.

Дугогасительная камера, выполненная из изоляционных материалов (гетинакса), установлена внутри цилиндра в месте разрыва контактов. Камера набрана из отдельных изоляционных перегородок, которые образуют три дутьевых поперечных канала, имеющих раздельные выходы в верхней части камеры. Перегородки скреплены между собой двумя изоляционными шпильками. Входные щели дутьевых каналов расположены одна над другой в центральном отверстии камеры. Когда выключатель включен, вход в каналы камеры закрыт токоведущим стержнем. При отключении выключателя токоведущий стержень продвигается вверх и каналы камеры постепенно открываются. В верхней части камеры, над каналами, центральное отверстие в трех местах имеет расширения, называемые карманами.

Гашение дуги

Процесс гашения дуги протекает следующим образом. При выходе токоведущего стержня из розеточного контакта разрывается электрическая цепь и в камере между контактами возникает дуга. От воздействия температуры дуги на масло образуются газы и пары масла. В начале отключения, когда дутьевые каналы еще закрыты стержнями, газы сжимают воздух, заключенный в стальном цилиндре. При малейшем движении подвижного токоведущего стержня вверх последовательно открываются дутьевые каналы камеры.

Выключатель ВМГ-133

Под давлением газа масло из подкамерного пространства устремляется в дутьевые каналы и, пересекая электрическую дугу, гасит ее. Карманы служат для гашения дуги при размыкании малых токов, когда возникающее в предкамерном пространстве давление недостаточно для создания поперечного дутья в каналах. В этом случае дуга затягивается внутрь центрального отверстия камеры и находящееся там масло переходит в газообразное состояние. После выхода подвижного контакта из центрального отверстия камеры газ, находящийся в карманах, создает добавочное продольное дутье, обеспечивающее гашение дуги.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector