Ikea73.ru

IKEA Стиль
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Виды электрического тока в диэлектрике

Виды электрического тока в диэлектрике

3. Электрические характеристики

Удельное электрическое сопротивление (р).

Любой электротехнический материал — проводник, полупроводник и даже диэлектрик проводит электрический ток. Для того чтобы определить степень электропроводности того или иного материала надо определить его удельное электрическое сопротивление р (Ом *м) рассчитывается по формуле:

R − общее электрическое сопротивление образца материала Ом.

L − длина пути тока в образце материала м.

S − площадь образца материала, через которую протекают токи проводимости м 2

Удельные сопротивления металлических проводников очень малы. Это указывает на большую электрическую проводимость проводниковых материалов.

Большие удельные сопротивления диэлектриков указывает на их весьма малую электрическую проводимость. У диэлектриков надо учитывать два удельных сопротивления: Удельное объёмное сопротивление ри и удельное поверхностное сопротивление ps.

u позволяет оценить электрическое сопротивление диэлектрика при прохождении тока через его объём, a ps − электрическое сопротивление при протекании тока по его поверхности. Численное значение рu всегда больше ps В проводниковых и полупроводниковых материалах измеряют общее р, т.к. в них нельзя рассчитать токи ри и ps. Это объясняется повышенной электрической проводимостью данных материалов.

Для газообразных и жидких диэлектриков поверхностное сопротивление не рассчитывается.

Электропроводность диэлектриков зависит не только от агрегатного состояния вещества, но и от содержания примесей, от температуры, влажностных характеристик материала, состояния поверхности и других характеристик.

1- проводник;2- полупроводник; 3- диэлектрик

Температурный коэффициент удельного сопротивления ТКР

С увеличением температуры объёмное сопротивление уменьшается, т.е. ТКр для диэлектриков имеет отрицательное значение.

ТКр. − позволяет оценить изменение удельного электрического сопротивления материалов при изменении его t. При линейном изменении удельного сопротивления (в узком интервале t) значение рассчитывается по формуле:

где p1 и p2 удельное электрическое сопротивление материала при начальной . На рисунке видно ТКР проводников >0. Это указывает на рост сопротивления с повышением температуры. У диэлектриков ТКР < 0, что указывает на уменьшение сопротивления этих материалов с повышением t.

Электрическая прочность Епр.

Под воздействием внешнего электрического поля и других факторов в диэлектрике может образоваться проводящий канал, т.е. могут теряться изоляционные свойства. Потеря диэлектриком изоляционных свойств называется пробоем.

Минимальное напряжение, приложенное к диэлектрику, при котором наступает пробой, называется пробивным напряжением Uпр.

Напряжение пробоя зависит от толщины диэлектрика и не является однозначной характеристикой его прочности. Электрической прочностьюпр) диэлектриков считается минимальная напряжённость однородного электрического поля (однородным называется электрическое поле, напряжённость во всех точках которого одинакова), при которой происходит пробой — разрушение диэлектрика с образованием в нём сквозного канала с очень большой проводимостью. Рассчитывается по формуле:

Unp-пробивное напряжение, при котором наступает пробой диэлектрика (В).

h − толщина диэлектрика в месте пробоя (м).

Т.к. диэлектики пробиваются при очень больших напряжениях (1000В) значения электрической прочности выражают в MB на м толщины.

Электрическая прочность диэлектриков зависит от агрегатного состояния и структуры материала, наличия примесей, однородности поля, расстояния между электродами (толщины диэлектрика), площади электродов и других факторов.

Епр уменьшается с увеличением толщины диэлектрика и с повышением температуры. Это связано с увеличением тока проводимости и возрастанием количества теплоты, выделяемой в диэлектрике.

При изготовлении электротехнического оборудования электрическая прочность изоляции (Епр) должна обеспечить надёжную работу оборудования в течение срока службы (20-40 лет). Это означает, что напряжение пробоя изоляции Uпр должно быть больше как максимального рабочего напряжения, так и возможных перенапряжений, которые могут возникать в электрических установках и системах. Эти перенапряжения могут превышать рабочие напряжения в 2-3 раза и более.

Виды пробоя.

В зависимости от механизма развития проводящего канала различают следующие виды пробоя: электрический, тепловой и электрохимический.

Электрический пробой возникает в сильных электрических полях и обусловлен электронными процессами – ударной и фотонной ионизацией. Этот вид пробоя преобладает в газообразных диэлектриках.

В жидких и твёрдых диэлектриках электрический пробой имеет место при больших значениях напряжённости электрического поля и при наличии в этих материалах газовых включений.

Тепловой пробой возникает при уменьшении электрического сопротивления диэлектрика за счёт нагрева. увеличение температуры диэлектрика возможно как за счёт увеличения тока утечки через диэлектрик, так и в результате нагрева токоведущих проводников при перегрузках и недостаточном охлаждении. Этот процесс может носить лавинообразный характер – вплоть до термического разрушения диэлектрика. Такой механизм пробоя характерен для жидких и твёрдых материалов.

Электрохимическим пробоем называется механизм образования проводящего канала в диэлектрике в результате одновременного воздействия как электрических, так и химических процессов. Он может развиваться в жидких и твёрдых диэлектриках, а также на поверхности твёрдых материалов.

Проектируем электрику вместе

Сопротивление проводников. Проводимость. Диэлектрики. Применение проводников и изоляторов. Полупроводники.

Физические вещества многообразны по своим электрическим свойствам. Наиболее обширные классы вещества составляют проводники и диэлектрики.

Проводники

Основная особенность проводников – наличие свободных носителей зарядов, которые участвуют в тепловом движении и могут перемещаться по всему объему вещества.
Как правило, к таким веществам относятся растворы солей, расплавы, вода (кроме дистиллированной), влажная почва, тело человека и, конечно же, металлы.

Читайте так же:
Как починить шторки розетки

Металлы считаются наиболее хорошими проводниками электрического заряда.
Есть также очень хорошие проводники, которые не являются металлами.
Среди таких проводников лучшим примером является углерод.

Все проводники обладают такими свойствами, как сопротивление и проводимость. Ввиду того, что электрические заряды, сталкиваясь с атомами или ионами вещества, преодолевают некоторое сопротивление своему движению в электрическом поле, принято говорить, что проводники обладают электрическим сопротивлением (R).
Величина, обратная сопротивлению, называется проводимостью (G).

G = 1/ R

То есть, проводимостьэто свойство или способность проводника проводить электрический ток.
Нужно понимать, что хорошие проводники представляют собой очень малое сопротивление потоку электрических зарядов и, соответственно, имеют высокую проводимость. Чем лучше проводник, тем больше его проводимость. Например, проводник из меди имеет б о льшую проводимость, чем проводник из алюминия, а проводимость серебряного проводника выше, чем такого же проводника из меди.

Диэлектрики

В отличие от проводников, в диэлектриках при низких температурах нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

К диэлектрикам относятся, в первую очередь, газы, которые проводят электрические заряды очень плохо. А также стекло, фарфор, керамика, резина, картон, сухая древесина, различные пластмассы и смолы.

Предметы, изготовленные из диэлектриков, называют изоляторами. Надо отметить, что диэлектрические свойства изоляторов во многом зависят от состояния окружающей среды. Так, в условиях повышенной влажности (вода является хорошим проводником) некоторые диэлектрики могут частично терять свои диэлектрические свойства.

О применении проводников и изоляторов

Как проводники, так и изоляторы широко применяются в технике для решения различных технических задач.

К примеру, все электрические провода в доме выполнены из металла (чаще всего медь или алюминий). А оболочка этих проводов или вилка, которая включается в розетку, обязательно выполняются из различных полимеров, которые являются хорошими изоляторами и не пропускают электрические заряды.

Нужно отметить, что понятия «проводник» или «изолятор» не отражают качественных характеристик: характеристики этих материалов в действительности находятся в широком диапазоне – от очень хорошего до очень плохого.
Серебро, золото, платина являются очень хорошими проводниками, но это дорогие металлы, поэтому они используются только там, где цена менее важна по сравнению с функцией изделия (космос, оборонка).
Медь и алюминий также являются хорошими проводниками и в то же время недорогими, что и предопределило их повсеместное применение.
Вольфрам и молибден, напротив, являются плохими проводниками и по этой причине не могут использоваться в электрических схемах (будут нарушать работу схемы), но высокое сопротивление этих металлов в сочетании с тугоплавкостью предопределило их применение в лампах накаливания и высокотемпературных нагревательных элементах.

Изоляторы также есть очень хорошие, просто хорошие и плохие. Связано это с тем, что в реальных диэлектриках также есть свободные электроны, хотя их очень мало. Появление свободных зарядов даже в изоляторах обусловлено тепловыми колебаниями электронов: под воздействием высокой температуры некоторым электронам все-таки удается оторваться от ядра и изоляционные свойства диэлектрика при этом ухудшаются. В некоторых диэлектриках свободных электронов больше и качество изоляции у них, соответственно, хуже. Достаточно сравнить, например, керамику и картон.

Самым лучшим изолятором является идеальный вакуум, но он практически не достижим на Земле. Абсолютно чистая вода также будет отличным изолятором, но кто-нибудь видел ее в реальности? А вода с наличием каких-либо примесей уже является достаточно хорошим проводником.
Критерием качества изолятора является соответствие его функциям, которые он должен выполнять в данной схеме. Если диэлектрические свойства материала таковы, что любая утечка через него ничтожно мала (не влияет на работу схемы), то такой материал считается хорошим изолятором.

Существуют вещества, которые по своей проводимости занимают промежуточное место между проводниками и диэлектриками.
Такие вещества называют полупроводниками. Они отличаются от проводников сильной зависимостью проводимости электрических зарядов от температуры, а также от концентрации примесей и могут иметь свойства, как проводников, так и диэлектриков.

В отличие от металлических проводников, у которых с ростом температуры проводимость уменьшается, у полупроводников проводимость растет с увеличением температуры, а сопротивление, как величина обратная проводимости — уменьшается.

При низких температурах сопротивление полупроводников, как видно из рис. 1 , стремится к бесконечности.
Это значит, что при температуре абсолютного нуля полупроводник не имеет свободных носителей в зоне проводимости и в отличие от проводников ведёт себя, как диэлектрик.
При увеличении температуры, а также при добавлении примесей (легировании) проводимость полупроводника растет и он приобретает свойства проводника.

Рис. 1 . Зависимость сопротивлений проводников и полупроводников от температуры

Примерами классических полупроводников являются такие химические элементы, как кремний (Si) и германий (Ge). Более подробно об этих элементах читайте в статье «О проводимости полупроводников».

Статьи по теме: 1. Что такое электрический ток?
2. Постоянный и переменный ток
3. Взаимодействие электрических зарядов. Закон Кулона
4. Направление электрического тока
5. О скорости распространения электрического тока
6. Электрический ток в жидкостях
7. Проводимость в газах
8. Электрический ток в вакууме
9. О проводимости полупроводников

Читайте так же:
Как подключить двойную розетку если нет заземления

Внимание!
Всех интересующихся практической электротехникой приглашаю на страницы своего нового сайта «Электрика для дома». Сайт посвящен основам электротехники и электричества с акцентом на домашние электрические установки и процессы, в них происходящие.

Электрический ток в металлических проводниках

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).


Таблица электрический ток в различных средах.

  • Металлы — здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.
  • Плазма — ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.
  • Электролиты — «жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока». Ионы образуются в процессе электролитической диссоциации. При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

Будет интересно➡ Что такое короткое замыкание

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.


Передача тока по проводам

Что такое ток, напряжение и сопротивление

Электрический ток ( I ) – это упорядоченное движение заряженных частиц. Первая мысль, которая приходит в голову из школьного курса физики – движение электронов. Безусловно. Однако электрический заряд могут переносить не только они, а, например, еще ионы, определяющие возникновение электрического тока в жидкостях и газах. Хочу предостеречь также от сравнения тока с протеканием воды по шлангу. (Хотя при рассмотрении Закона Кирхгофа такая аналогия будет уместна). Если каждая конкретная частица воды проделывает путь от начала до конца, то носитель электрического тока так не поступает.

Материал по теме: Что такое реле контроля.

Если уж нужна наглядность, то я бы привел пример переполненного автобуса, когда на остановке некто, втискиваясь в заднюю дверь, становится причиной выпадения из передней менее удачливого пассажира. Условиями возникновения и существования электрического тока являются:

  • Наличие свободных носителей заряда
  • Наличие электрического поля, создающего и поддерживающего ток.

Будем считать, что теперь про электрический ток Вы знаете все. Это, конечно, шутка. Тем более что еще ничего не сказано про электрическое поле, которое у многих ассоциируется с напряжением, что не верно. Электрическое поле – это вид материи, существующей вокруг электрически заряженных тел и оказывающее на них силовое воздействие. Опять же, обращаясь к знакомому со школы “одноименные заряды отталкиваются, а разноименные притягиваются” можно представить электрическое поле как нечто это воздействие передающее.

Это поле, равно как любое другое непосредственно ощутить нельзя, но существует его количественная характеристика – напряженность электрического поля.

Существует множество формул, описывающих взаимосвязь электрического поля с другими электрическими величинами и параметрами. Я ограничусь одной, сведенной к примитиву: E=Δφ. Здесь:

  • E – напряженность электрического поля. Вообще это величина векторная, но я упростил все до скаляра.
  • Δφ=φ1-φ2 – разность потенциалов (рисунок 1).

Поскольку условием существования тока является наличие электрического поля, то его (поле) надо каким либо образом создать. Хорошо знакомые опыты электризации расчески, натирания тканью эбонитовой палочки, верчения ручки электростатической машины по вполне очевидным причинам на практике неприемлимы.


Электролиз в домашних условиях

Поэтому были изобретены устройства, способные обеспечивать разность потенциалов за счет сил неэлектростатического происхождения (одно из них – хорошо всем известная батарейка), получившие название источник электродвижущей силы (ЭДС), которая обозначается так: ε. Физический смысл ЭДС определяется работой, которую совершают сторонние силы, перемещая единичный заряд, но для того, чтобы получить первоначальное понятие что такое электрический ток, напряжение и сопротивление нам не нужно подробное рассмотрение этих процессов в интегральной и иных не менее сложных формах.

Напряжение ( U )

Наотрез отказываюсь продолжать заморачивать Вам голову сугубо теоретическими выкладками и даю определение напряжения как разности потенциалов на участке цепи: U=Δφ=φ1-φ2, а для замкнутой цепи будем считать напряжение равным ЭДС источника тока: U=ε. Это не совсем корректно, но на практике вполне достаточно. Сопротивление ( R ) – название говорит само за себя – физическая величина, характеризующая противодействие проводника электрическому току. Формула, определяющая зависимость напряжения, тока и сопротивления называется закон Ома. Этот закон рассматривается на отдельной странице этого раздела.

Будет интересно➡ Как устроен трехфазный выпрямитель

Кроме того, сопротивление зависит от ряда факторов, например, материала проводника. Данные эти справочные, приводятся в виде значения удельного сопротивления ρ, определяемого как сопротивление 1 метра проводника/сечение. Чем меньше удельное сопротивление, тем меньше потери тока в проводнике.

Читайте так же:
Как может расплавиться розетка


Источники электрической энергии

Соответственно сопротивление проводника длиной L и площадью сечения S, будет составлять R=ρ*L/S. Непосредственно из приведенной формулы видно, что сопротивление проводника также зависит от его длины и сечения. Температура тоже оказывает влияние на сопротивление. Несколько слов про единицы измерения тока, напряжения, сопротивления. Основные единицы измерения этих величин следующие:

  • Ток – Ампер (А)
  • Напряжение – Вольт (В)
  • Сопротивление – Ом (Ом).

Это единицы измерения интернациональной системы (СИ) не всегда удобны. На практике применяются из производные (милиампер, килоом и пр.). При расчетах следует учитывать размерность всех величин, содержащихся в формуле. Так, если Вы, в законе Ома умножите ампер на килоом, то напряжение получите совсем не вольтах.

Интересно по теме: Как проверить стабилитрон.

Электрическое поле

Электрическое поле заряда

– это материальный объект, оно непрерывно в пространстве и способно действовать на другие электрические заряды. Электрическое поле неподвижных зарядов называется
электростатическим
. Электростатическое поле создается только электрическими зарядами, существует в пространстве, окружающем эти заряды и неразрывно с ними связано.

Если к электроскопу, не касаясь его оси, поднести на некотором расстоянии заряженную палочку, то стрелка все равно будет откланяться. Это и есть действие электрического поля.

Напряженность электрического поля

Заряды, находясь на некотором расстоянии один от другого, взаимодействуют. Это взаимодействие осуществляется посредством электрического поля. Наличие электрического поля можно обнаружить, помещая в различные точки пространства электрические заряды. Если на заряд в данной точке действует электрическая сила, то это означает, что в данной точке пространства существует электрическое поле. Графически силовые поля изображают силовыми линиями.

Силовая линия

– это линия, касательная в каждой точке которой совпадает с вектором напряженности электрического поля в этой точке.

Напряженность электрического поля

– это физическая величина, численно равная силе, действующей на единичный заряд, помещенный в данную точку поля. За направление вектора напряженности принимают направление силы, действующей на точечный положительный заряд.

Однородное электрическое поле

– это такое поле, во всех точках которого напряженность имеет одно и то же абсолютное значение и направление. Приблизительно однородным является электрическое поле между двумя разноименно заряженными металлическими пластинами. Силовые линии такого поля являются прямыми одинаковой густоты.

Потенциал. Разность потенциалов.

Кроме напряженности, важной характеристикой электрического поля является потенциал j. Потенциал j – это энергетическая характеристика электрического поля, тогда как напряженность E – это его силовая характеристика, потому что потенциал равен потенциальной энергии, которой обладает единичный заряд в данной точке поля, а напряженность равна силе, с которой поле действует на этот единичный заряд.

Диэлектрики в электрическом поле

Диэлектриками или изоляторами

называются тела, которые не могут проводить через себя электрические заряды. Это объясняется отсутствием в них свободных зарядов.

Если одни конец диэлектрика внести в электрическое поле, то перераспределения зарядов не произойдет, т. к. в диэлектрике нет свободных носителей заряда. Оба конца диэлектрика будут нейтральны. Притяжение незаряженного тела из диэлектрика к заряженному телу объясняется тем, что в электрическом поле происходит поляризация диэлектрика, т. е. смещение в противоположные стороны разноименных связанных зарядов, входящих в состав атомов и молекул вещества.

Полярные и неполярные диэлектрики


Виды диэлектриков

К неполярным

относятся диэлектрики, в атомах или молекулах которых центр отрицательно заряженного электронного облака совпадает с центром положительного атомного ядра. Например, инертные газы, кислород, водород, бензол.

диэлектрики состоят из молекул, у которых центры распределения положительных и отрицательных зарядов не совпадают. Например, спирты, вода. Их молекулы можно рассматривать как совокупность двух точечных зарядов, равных по модулю и противоположных по знаку, находящихся на некотором расстоянии друг от друга. Такую в целом нейтральную систему называют электрическим диполем.

Проводники в электрическом поле

Проводниками называются тела, способные пропускать через себя электрические заряды. Это свойство проводников объясняется наличием в них свободных носителей заряда. Примерами проводников могут быть металлы и растворы электролитов.

Если взять металлический проводник и один его конец поместить в электрическое поле, то на данном конце появится электрический заряд. Согласно закону сохранения электрического заряда, на другом конце проводника появится равный ему по модулю и противоположный по знаку заряд. Явление разделения разноименных зарядов в проводнике, помещенном в электрическое поле, называется электростатической индукцией

При внесении в электрическое поле проводника свободные заряды в нем приходят в движение. Перераспределение зарядов вызывает изменение электрического поля. Движение зарядов прекращается только тогда, когда напряженность электрического поля внутри проводника становится равной нулю. Свободные заряды перестают перемещаться вдоль поверхности проводящего тела при достижении такого распределения, при котором вектор напряженности электрического поля в любой точке перпендикулярен поверхности тела. Электростатическое поле внутри проводника равно нулю, весь статический заряд проводника сосредоточен на его поверхности.

Электрическая энергия

В разных регионах, в частности, и в Украине простой обыватель интересуется: «Що таке електричний струм?», с какой целью он применяется, из чего происходит. Повседневно мы пользуемся электрической энергией, которая представлена переменным током в электрических сетях.

Читайте так же:
Коронки для сверления стен под розетки

Переменный ток в проводнике — это когда частицы, имеющие заряд за определенный промежуток времени, меняют его по направлению, а также по величине. Графически переменный ток представляется синусоидой. Создается он генераторами, в которых вращаются катушки с проводами и в процессе вращения пересекают магнитное поле. В период вращения катушки могут открываться и закрываться по отношению к магнитному полю, что создает электрический ток, который меняется в проводниках по направлению, а полный цикл проходит за одну минуту.

Электрический ток в генераторах, принцип устройства машин:

Электрический ток в генераторах, принцип устройства машин

Электрический ток в генераторах, принцип устройства машин

Вращение генераторов происходит от паровых турбин, имеющих разные источники питания: уголь, газ, атомный реактор, нефть. Далее через систему трансформаторов повышается напряжение тока, через проводники нужного диаметра он переносится без потерь на длительное расстояние. Диаметр провода, по которому проходит ток, определяет его силу и величину, горячими линиями в энергетике называются магистральные линии передачи энергии, есть и заземленные варианты, когда передача электроэнергии происходит под землей.

Где применяется электрический ток?

Именно ток значительно облегчает нам жизнь, создавая комфорт в доме. Он применяется для освещения помещений, улицы, для просушки вещей, в нагревательных элементах электроплиты, в других бытовых приборах и устройствах, выполняет работу подъема гаражных дверей и т.д.

Работа электротока в быту:

Работа электротока в быту

Работа электротока в быту

Диэлектрики

Квантовая теория твёрдого тела объясняет различие электрических свойств металлов и диэлектриков различным распределением электронов по энергетическим уровням. В диэлектриках верхний заполненный электронами энергетический уровень совпадает с верхней границей одной из разрешённых зон (в металлах он лежит внутри разрешённой зоны), а ближайшие свободные уровни отделены от заполненных запрещённой зоной, преодолеть которую под действием не слишком сильных электрических полей электроны не могут (смотри Зонная теория). Действие электрического поля сводится к перераспределению электронной плотности, которое приводит к поляризации диэлектрика.

Поляризация диэлектриков. Механизмы поляризации диэлектриков зависят от характера химической связи, т. е. распределения электронной плотности в диэлектриках. В ионных кристаллах (например, NaCl) поляризация является результатом сдвига ионов относительно друг друга (ионная поляризация), а также деформации электронных оболочек отдельных ионов (электронная поляризация), т. е. суммой ионной и электронной поляризаций. В кристаллах с ковалентной связью (например, алмаз), где электронная плотность равномерно распределена между атомами, поляризация обусловлена главным образом смещением электронов, осуществляющих химическую связь. В так называемых полярных диэлектриках (например, твёрдый Н2S) группы атомов представляют собой электрические диполи, которые ориентированы хаотически в отсутствии электрического поля, а в поле приобретают преимущественную ориентацию. Такая ориентационная поляризация типична для многих жидкостей и газов. Похожий механизм поляризации связан с «перескоком» под действием электрического поля отдельных ионов из одних положений равновесия в решётке в другие. Особенно часто такой механизм наблюдается в веществах с водородной связью (например, лёд), где атомы водорода имеют несколько положений равновесия.

Поляризация диэлектриков характеризуется вектором поляризации Р, который представляет собой электрический дипольный момент единицы объёма диэлектрика:

Диэлектрики

где pi — дипольные моменты частиц (атомов, ионов, молекул), N — число частиц в единице объёма. Вектор Р зависит от напряжённости электрического поля Е. В слабых полях Ρ = εϰΕ. Коэффициент пропорциональности ϰ называется диэлектрической восприимчивостью. Часто вместо вектора Р используют вектор электрической индукции (1)

Диэлектрики

где ε — диэлектрическая проницаемость, ε — электрическая постоянная. Величины ϰ и ε — основные характеристики диэлектрика. В анизотропных диэлектриках (например, в некубических кристаллах) направление Р определяется не только направлением поля Е, но и направлением осей симметрии кристалла. Поэтому вектор Р будет составлять различные углы с вектором Е в зависимости от ориентации Е по отношению к осям симметрии кристалла. В этом случае вектор D будет определяться через вектор Е с помощью не одной величины ε, а нескольких (в общем случае шести), образующих тензор диэлектрической проницаемости.

Диэлектрики в переменном поле. Если поле Е изменяется во времени t, то поляризация диэлектрика не успевает следовать за ним, так как смещения зарядов не могут происходить мгновенно. Поскольку любое переменное поле можно представить в виде совокупности полей, меняющихся по гармоническому закону, то достаточно изучить поведение диэлектрика в поле Е = Еsinωt, где ω — частота переменного поля, Е — амплитуда напряжённости поля. Под действием этого поля D и Р будут колебаться тоже гармонически и с той же частотой. Однако между колебаниями Р и Е появляется разность фаз δ, что вызвано отставанием поляризации Р от поля Е. Гармонический закон можно представить в комплексном виде Е = Еe iωt , тогда D = De iωt , причём D = ε(ω)Ε. Диэлектрическая проницаемость в этом случае является комплексной величиной: ε(ω) = ε’ + iε’’, ε’ и ε’’ зависят от частоты переменного электрического поля ω. Абсолютная величина

Диэлектрики

определяет амплитуду колебания D, а отношение ε’/ε» = tgδ — разность фаз между колебаниями D и Е. Величина δ называется углом диэлектрических потерь. В постоянном электрическом поле ω = 0, ε» = 0, ε’ = ε.

Читайте так же:
Вредно ли излучение от розеток

В переменных электрических полях высоких частот свойства диэлектрика характеризуются показателями преломления n и поглощения k (вместо ε’ и ε» ). Первый равен отношению скоростей распространения электромагнитных волн в диэлектрике и в вакууме. Показатель поглощения k характеризует затухание электромагнитных волн в диэлектрике. Величины n, k, ε’ и ε» связаны соотношением (2)

Диэлектрики

Поляризация диэлектриков в отсутствии электрического поля. В ряде твёрдых диэлектриков (пироэлектриках, сегнетоэлектриках, пьезоэлектриках, электретах) поляризация может существовать и без электрического поля, т. е. может быть вызвана другими причинами. Так, в пироэлектриках заряды располагаются столь несимметрично, что центры тяжести зарядов противоположного знака не совпадают, т. е. диэлектрик спонтанно поляризован. Однако поляризация в пироэлектриках проявляется только при изменении температуры, когда компенсирующие поляризацию электрические заряды не успевают перестроиться. Разновидностью пироэлектриков являются сегнетоэлектрики, спонтанная поляризация которых может существенно изменяться под влиянием внешних воздействий (температуры, электрического поля). В пьезоэлектриках поляризация возникает при деформации кристалла, что связано с особенностями их кристаллической структуры. Поляризация в отсутствии поля может наблюдаться также в некоторых веществах типа смол и стёкол, называемых электретами.

Электрическая проводимость диэлектриков мала, но всегда отлична от нуля. Подвижными носителями заряда в диэлектриках могут быть электроны и ионы. В обычных условиях электронная проводимость диэлектриков мала по сравнению с ионной. Ионная проводимость может быть обусловлена перемещением как собственных ионов, так и примесных. Возможность перемещения ионов по кристаллу связана с наличием дефектов в кристаллах. Если, например, в кристалле есть вакансия, то под действием поля соседний ион может занять её, во вновь образовавшуюся вакансию может перейти следующий ион и т. д. В итоге происходит движение вакансий, которое приводит к переносу заряда через весь кристалл. Перемещение ионов происходит и в результате их перескоков по междоузлиям. С ростом температуры ионная проводимость возрастает. Заметный вклад в электрическую проводимость диэлектрика может вносить поверхностная проводимость (смотри Поверхностные явления).

Пробой диэлектриков. Плотность электрического тока j через диэлектрик пропорциональна напряжённости электрического поля Е (закон Ома): j = ςЕ, где ς — электрическая проводимость диэлектрика. Однако в достаточно сильных полях ток нарастает быстрее, чем по закону Ома. При некотором критическом значении Епр наступает электрический пробой диэлектрика. Величина Епр называется электрической прочностью диэлектрика. При пробое почти весь ток течёт по узкому каналу (смотри Шнурование тока). В этом канале j достигает больших величин, что может привести к разрушению диэлектрика: образуется сквозное отверстие или диэлектрик проплавляется по каналу. В канале могут протекать химические реакции; например, в органических диэлектриках осаждается углерод, в ионных кристаллах — металл (металлизация канала) и т. п. Пробою способствуют всегда присутствующие в диэлектрике неоднородности, поскольку в местах неоднородностей поле Е может локально возрастать.

В твёрдых диэлектриках различают тепловой и электрический пробои. При тепловом пробое с ростом j растёт количество теплоты, выделяемое в диэлектрике, и, следовательно, температура диэлектрика, что приводит к увеличению числа носителей заряда n и уменьшению удельного электрического сопротивления ρ. При электрическом пробое с ростом поля возрастает генерация носителей заряда под действием поля и ρ тоже уменьшается.

Электрическая прочность жидких диэлектриков в сильной степени зависит от чистоты жидкости. Наличие примесей и загрязнений существенно понижает Епр. Для чистых однородных жидких диэлектриков Епр близка к Епр твёрдых диэлектриков. Пробой в газе связан с ударной ионизацией и проявляется в виде электрического разряда.

Нелинейные свойства диэлектриков. Линейная зависимость Р = εϰЕ справедлива только для полей Е, значительно меньших внутрикристаллических полей Екркр порядка 10 8 В/см). Т.к. Епр << Екр, то в большинстве диэлектриков не удаётся наблюдать нелинейную зависимость Р(Е) в постоянном электрическом поле. Исключение составляют сегнетоэлектрики, в которых в сегнетоэлектрической области и вблизи точек фазовых переходов наблюдается сильная нелинейная зависимость Р(Е). При высоких частотах электрическая прочность диэлектрика повышается, поэтому нелинейные свойства любых диэлектриков проявляются в ВЧ-полях больших амплитуд. В частности, в луче лазера могут быть созданы электрические поля напряжённостью порядка 10 8 В/см, в которых становятся существенными нелинейные свойства диэлектрика, что позволяет осуществить преобразование частоты света, самофокусировку света и другие нелинейные эффекты (смотри Нелинейная оптика).

Применение диэлектриков. Диэлектрики используются главным образом как электроизоляционные материалы. Пьезоэлектрики применяются для преобразования механических сигналов (перемещений, деформаций, звуковых колебаний) в электрические и наоборот (смотри Пьезоэлектрический преобразователь); пироэлектрики — как тепловые детекторы различных излучений, особенно ИК-излучения; сегнетоэлектрики, будучи также пьезоэлектриками и пироэлектриками, применяются, кроме того, как конденсаторные материалы (из-за высокой диэлектрической проницаемости), а также как нелинейные элементы и элементы памяти в разнообразных устройствах. Большинство оптических материалов является диэлектриками.

Лит.: Фрелих Г. Теория диэлектриков. М., 1960; Хиппель А. Р. Диэлектрики и волны. М., 1960; Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. М., 1966. Вып. 5: Электричество и магнетизм; Калашников С. Г. Электричество. 5-е изд. М., 1985.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector