Ikea73.ru

IKEA Стиль
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

1. Введение

1. Введение

1.1. Настоящее Руководство по капитальному ремонту масляного выключателя ВМГ-10-630-20 и ВМГ-10-1000-20 1 предусматривает применение персоналом энергетических и других специализированных предприятий наиболее рациональных форм организации ремонтных работ и передовых технологических приемов их выполнения.

1 В дальнейшем для краткости — Руководство.

1.2. В Руководстве приведены:

• технические требования к объему и качеству ремонтных работ и к методам их выполнения (независимо от организационно-технического уровня ремонтных подразделений);

• методы контроля при ремонте узлов и деталей оборудования и правила приемки оборудования в ремонт и из ремонта;

• критерии оценки качества выполнения ремонтных работ.

1.3. Руководство составлено на основе обобщения передового опыта работы ремонтных предприятий энергосистем, а также технической документации завода-изготовителя.

1.4. Руководство предусматривает модернизацию бакелитовой трубки проходного изолятора выключателей, выпущенных до 1976 г.

1.5. Техническая характеристика масляных выключателей ВМГ-10-630-20, ВМГ-10-1000-20:

Напряжение, кВ:

Номинальный ток, А

Номинальный ток отключения, кА

Предельный сквозной ток, кА:

эффективное значение периодической составляющей

Ток термической устойчивости для промежутка времени 4 с, кА

Ток включения, кА:

эффективное значение периодической составляющей

Собственное время отключения выключателя с приводом ПЭ-II/ПП-67, с

Не более 0,10 — 0,12

2. Организация работ по ремонту выключателя

2.1. Общие положения

2.1.1. Планирование и организация ремонтных работ осуществляется в соответствии с действующими Инструкциями по организации планово-предупредительного ремонта оборудования электросетевых предприятий.

2.1.2. Сроки выполнения ремонтных работ должны определяться с учетом следующих условий:

а) изменение состава бригады до окончания ремонта не допускается;

б) должна предусматриваться непрерывная загрузка отдельных исполнителей и бригады в целом;

в) режим работы ремонтного персонала должен быть подчинен максимальному сокращению сроков ремонтных работ.

2.1.3. Руководство предусматривает состав ремонтной бригады из 3 чел.: электрослесарь 4-го разряда — 1 чел.; электрослесарь 3-го разряда — 1 чел.; электрослесарь 2-го разряда — 1 чел.

2.1.4. Трудозатраты на капитальный ремонт выключателя определяются на основании "Норм времени на капитальный и текучий ремонты и эксплуатационное обслуживание оборудования подстанций 35 — 500 кВ и распределительных сетей 0,4 — 20 кВ" с учетом дополнений и изменений согласно указанию Минэнерго СССР от 28.04.1977 г. № 9 НС-5195 в составляют 18,5 чел.-ч. В случае выполнения модернизации трудозатраты увеличиваются на 2,5 чел.-ч.

2.1.5. Наиболее прогрессивным является проведение ремонта агрегатно-узловым методом специализированными бригадами. В этом случае ремонт сводится к замене полюсов выключателя на заранее отремонтированные в мастерской.

При производстве ремонта на месте установки демонтаж полюсов выключателя с опорных изоляторов производить только в случае необходимости их замены или в случае замены опорных изоляторов.

2.2. Подготовка к ремонту

2.2.1. Подготовка к капитальному ремонту производятся в соответствии с конкретным объемом работ, предусмотренных для данного оборудования.

2.2.2. К началу ремонта должна быть укомплектована бригада из рабочих соответствующей квалификации, прошедших обучение, проверку знаний и инструктаж по ТБ.

2.2.3. Перед началом работы бригаде должно быть выдано нормированное план-задание с конкретным перечнем работ и указанием объема, трудозатрат и срока окончания ремонтных работ.

2.2.4. До начала ремонта необходимо:

а) подготовить набор слесарного инструмента, а также приборы и мерительный инструмент (приложения 1, 2);

б) подготовить и доставить к рабочим местам основные и вспомогательные материалы и запасные части для ремонта (приложения 3, 4);

в) подготовить и проверить защитные средства;

г) согласовать порядок работы с другими бригадами, выполняющими смежные работы.

2.2.5. Производителю работ совместно с руководителем ремонта после оформления наряда на ремонт выключателя необходимо:

а) убедиться в правильном и полном выполнении всех мероприятий, обеспечивающих безопасность работ;

б) осуществить все противопожарные мероприятия.

2.3. Контроль качества ремонтных работ

2.3.1. Контроль качество ремонтных работ со стороны производителя работ осуществляется в следующем порядке:

а) проверку состояния каждой сборочной единицы в ходе выполнения работ производить совместно с руководителем ремонта. При этом руководитель должен дать указания о способах ремонта и дополнить (уточнить) технические требования на ремонт, по которым будут осуществляться приемка сборочной единицы из ремонта и оценка качества ремонтных работ;

б) законченные скрытые работы и выполненные промежуточные операции предъявлять руководителю для приемки и оценки качества.

2.3.2. Окончательную приемке выключателя производят представители эксплуатационного подразделения совместно с руководителем ремонта, о чем составляется ведомость основных показателей технического состояния выключателя после капитального ремонта, которая подписывается представителями эксплуатации и руководителем ремонта (приложение 5).

2.4. Приемка выключателя в ремонт

2.4.1. До начала капитального ремонта комиссия из представителей эксплуатационного и ремонтного подразделений с обязательным участим руководителя ремонта проверяет готовность к ремонту:

а) наличие ведомости объема работ капитального ремонта;

б) наличие материалов, запасных частей, оснастки и инструмента;

в) достаточность мероприятий о технике безопасности, охране труда и пожарной безопасности.

2.4.2. При приемке выключателя в ремонт необходимо ознакомиться с ведомостью дефектов и объемом работ, выполненных в предыдущий капитальный ремонт и в межремонтный период.

3. Наружный осмотр и подготовка выключателя к разборке

3.1. Осмотреть выключатель и привод, обратив внимание на наличие подтеков масла из-под маслоспускной пробки, маслоуказателя, наличие выброса масла через жалюзи маслоотделителя.

3.2. Произвести несколько операций включения и отключения.

3.3. Снять оперативное напряжение.

3.4. Произвести расшиновку выключателя.

3.5. Слить масло, проследив за снижением уровня масла в маслоуказателях.

4. Разборка выключателя

4.1. Общая разборка выключателя

4.1.1. Расшплинтовать ось 4 (рис. д1), отсоединить контактный стержень 2 от серьги 3.

Читайте так же:
Блок выключателей обогрева сидений

4.1.2. Удалить контактный стержень 2 от полюса выключателя.

4.1.3. Стать проходной изолятор 1.

4.1.4. Стать нижнюю крышку 1 (рис. 2) с неподвижным розеточным контактом 2.

4.1.5. Вынуть изоляционные цилиндры 3, 5 и дугогасительную камеру 4 и уложить их на железный противень.

Примечание . Дугогасительную камеру предохранять от увлажнения, загрязнения и повреждения. Длительное хранение камеры целесообразно в чистом "сухом" трансформаторном масле.

4.2. Разборка дугогасительного устройства

4.2.1. Отвинтить гайки 1 (рис. 3).

4.2.2. Разобрать камеру, сложив пластины 314 на противень.

4.3. Разборка неподвижного розеточного контакта

4.3.1. Стать кольцо 2 (рис. 4), пружины 1, 5, прокладки 4.

4.3.2. Вывернуть болты 6, 8, стать гибкие связи 7 и ламели 3.

4.4. Разборка проходного изолятора

4.4.1. Стать токоведущую скобу 1 (рис. 5).

4.4.2. Вынуть кольцо 2, картонную шайбу 3, кожаную манжету 4, втулку 5.

4.4.3. Извлечь бакелитовую трубку 8 с верхней резиновой манжетой.

4.4.4. Стать резиновую манжету с бакелитовой трубки.

4.4.5. Провести модернизацию бакелитовой трубки 8 согласно разделу 7 данного Руководства.

4.5. Разборка подвижного контакта

4.5.1. Отсоединить гибкую связь 4 (рис. 6) от контактной колодки 3.

4.5.2. Отвинтить гайку 3, снять контактные колодки 2.

4.6. Разборка масляного буфера

Отвинтить гайку 2 (рис. 7), вынуть шток 1, поршень 3, пружину 4.

5. Технические требования на дефектацию и ремонт деталей общего применения

5.1. Резьбовые соединения и крепежные детали

5.1.1. Состояние резьбы проверить внешним осмотром, а также навинчиванием гаек (ввертыванием болта) от руки.

5.1.2. Детали подлежат замене при наличии следующих дефектов:

а) заусенцев, вмятин, забоин, выкрашиваний и срыва резьбы более двух ниток;

б) люфтов при завинчивании гаек (вворачивании болтов);

в) трещин и несмываемой ржавчины;

г) повреждения граней и углов на головках болтов и гаек или износа граней более 0,5 мм (от номинального размера).

5.1.3. Детали подлежат ремонту при наличии следующих дефектов:

а) местных повреждений по резьбе не более половины высоты резьбы;

б) местных повреждений общей протяженностью не более 10 % длины витка. Такие дефекты устранять прогонкой резьбонарезным инструментов или в отдельных случаях опиловкой.

5.1.4. Отверстия для шплинтов в болтах не должны быть забиты и увеличены.

5.1.5. Перед установкой резьбовые соединения смазать смазкой ЦИАТИМ-205.

5.2. Плоские шайбы, стопорные и пружинные шайбы

5.2.1. Детали подлежат замене при:

а) наличии трещин, изломов;

б) потере упругости;

в) разводе пружинной шайбы менее полуторной ее толщины.

5.2.2. Пружинные шайбы, бывшие в эксплуатации, допускаются к повторному применению только в том случае, если они не потеряли своей упругости, которая характеризуется разводом концов шайб. Нормальный развод пружинной шайбы равен двойной ее толщине, допустимый — полуторной.

5.3. Пружины

5.3.1. Пружины подлежат замене при наличии следующих дефектов:

а) надломов, трещин, засветлений, несмываемой ржавчины;

б) неравномерности шага витков пружины сжатия более 10 % по всей длине;

в) потере упругости пружины.

5.4. Резиновые детали

5.4.1. Состояние пружины определяется внешним осмотром.

5.4.2. Резиновые детали подлежат замене при наличии следующих дефектов:

а) трещин, срезов, заработок, расслоений;

б) остаточной деформации;

в) потере пластичности.

5.4.3. В зимнее время перед установкой резину рекомендуется прогреть в помещении до комнатной температуры.

5.5. Детали из гетинакса, фибры, картона и бакелита

5.5.1. Состояние деталей проверяется осмотром.

5.5.2. Детали подлежат замене при наличии следующих дефектов:

а) порывов, срезов, трещин;

б) морщин, складок, надломов;

в) разбухания, увеличения размеров;

г) рыхлых включений;

д) неравномерности толщин прокладок более 0,1 мм.

5.5.3. Уплотняющие прокладки должны быть равномерно зажаты между деталями. Не допускается выступание прокладок за края деталей более чем на 0,5 мм.

5.5.4. При незначительных трещинах, расслоениях, обгаре рекомендуется тщательно очистить поверхность, обезжирить и покрыть бакелитовым лаком.

5.6. Валы, оси

5.6.1. Оси подлежат замене при наличии следующих дефектов:

а) износа по диаметру, овальности в местах износа;

б) искривления осей в средней части и в концах более 0,2 — 0,3 мм;

в) трещин, задиров на поверхностях трения валов и осей;

г) седловин на рабочих поверхностях трения валов и осей глубиной более 1 мм.

5.6.2. Искривление осей проверять по линейке, отвесу, стеклу. Правку валов и осей производить в холодном состоянии легкими ударами молотка на устойчивой опоре.

Для предотвращения повреждения деталей на опору и под молоток ставить деревянные или свинцовые прокладки.

5.6.3. Диаметр и эллипсность осей проверять штангенциркулем.

5.6.4. Задиры на поверхностях осей снимать аккуратно напильником или шлифовальной шкуркой.

5.6.5. Седловины и вмятины на рабочих поверхностях осей определять измерением наименьшего диаметра в месте вмятины. Опиловка седловин и вмятин на рабочих поверхностях не допускается.

5.7. Гибкие связи

Гибкие связи подлежат замене при изломе пластин более 1/4 толщины.

5.8. Поршни

При наличии трещин — заменить. Задиры, следы коррозии зачистить.

5.9. Основные детали

Произвести дефектацию и ремонт дугогасительной камеры, контактного стержня, проходного изолятора, ламели, опорного изолятора, бака выключателя согласно пп. 5.9.1 — 5.9.6.

5.9.1. Дугогасительная камера (рис. 3)

Количество на изделие — 3.

Позиция на рисунке

Способ установления дефекта и контрольные инструмент

Способ устранения дефекта

Обугливание без увеличения сечения дутьевых каналов

Зачистить напильником или мелкой шкуркой, затем промыть трансформаторным маслом

Обгар. Увеличение диаметра более 28 — 30 мм

Осмотр. Измерение. Штангенциркуль

Обгар. Увеличение отверстия в перегородках в сторону выхлопных каналов до 3 мм

Технические требования к отремонтированной детали

1. Размеры должны быть: А = ; Б = ; В = ; зазор С = 1 ÷ 4мм

Читайте так же:
Внутреннее сопротивление автоматических выключателей

2. Высота камеры Н должна быть равной

Устройство маслянного выключателя ВМГ-10

Выключатели серии ВМГ-10 маломасляные имеют металлический бак, который для выключателей на номинальный ток 1000 А выполнен из латуни, а для выключателей на номинальный ток 630 А — из стали и имеет продольный немагнитный шов. Выключатель имеет съемное дно с неподвижным розеточным контактом. Выключатели на 630 и 1000 А имеют одинаковые токоведущие стержни и розеточные контакты и отличаются размерами колодки и количеством гибких связей (одна на полюс 630 А и две на 1000 А) Применены рычаги из стеклопластика вместо фарфоровых тяг.

Выключатель имеет стальную раму, полюс для выключателей на номинальный ток 630А представляет собой стальной цилиндр, имеющий продольный немагнитный шов и латунный для выключателей на 1000А.

Каждый полюс имеет по две скобы для крепления к опорным изоляторам, дополнительный резервуар, маслоотделитель, маслоналивную пробку и маслоуказатель. Внутри цилиндра расположены изоляционные цилиндры и, между которыми устанавливается дугогасительная камера.

Нижняя часть цилиндра закрывается съемным силуминовым дном с усиленным розеточным контактом. Розеточный контакт состоит из пяти ламелеи, соединенных через гибкие связи с дном.
Давление ламелей на токоведущий стержень создается пружинами, расположенными внутри латунного кольца. Для повышения стойкости контактов к действию электрической дуги съемный наконечник подвижного контакта и верхние концы ламелей розеточного контакта облицованы дугостойкой металлокерамикой. В дне имеется маслоспускная пробка.

Подвижный контактный стержень состоит из самого стержня и колодки, к торцу которой крепятся гибкие связи. В верхней части стержня имеется наконечник, служащий для соединения контактного стержня с изолирующим рычагом. Выключатели на 630 и 1000А имеют одинаковые токоведущие стержни и розеточные контакты. Токопровод у них отличается размерами колодки и числом гибких связей (на полюс 630А — 1 шт., на полюс 1000А — 2шт.).

6. Испытание, ревизия и диагностика подстанционного выключателя ускоренного действия ВМ – 35. (дать определение, структура условного обозначения, конструкция, принцип работы, испытание масла перед заливкой, конструкция дугогасительной камеры, организационные и технические мероприятия, сопротивление изоляции).

Выключатель — это коммутационный аппарат, предназначенный для включения и отключения электрической цепи в различных режимах: длительная нагрузка, перегрузка, короткое замыкание (КЗ), холостой ход, несинхронная работа.

Структура условного обозначения

ВМ-10М-Х/Х ХХ:
ВМ — выключатель маломасляный;
10 — номинальное напряжение, кВ;
М — модернизированный;
Х — номинальный ток отключения, кА (10; 12,5; 20);
Х — номинальный ток, А (320; 400; 630; 1 000);
ХХ — климатическое исполнение (У, Т) и категория размещения
(2, 3) по ГОСТ 15150-69.

Конструкция

Основными конструктивными частями выключателя являются: корпус, изоляционная конструкция, приводной механизм, токоведущие части, контактная система (подвижные и неподвижные контакты) с дугогасительным устройством (ДУ) или, за редким исключением, без такового (выключатель с открытой дугой).

В масляном выключателе (МВ) контакты замыкаются и размыкаются в изоляционном (трансформаторном) масле, которое вследствие высокой температуры электрической дуги между контактами (до 18000К в стволе дуги) испаряется и разлагается на газы (1 г масла дает приблизительно 1500 см 3 газов).

Приблизительно половину (по объему) среды, в которой происходит электрический разряд в виде дуги, составляют пары масла, а остальную часть — водород (до 70%), ацетилен (около 17%), метан (9%) и другие газообразные углеводороды. Газы из-за отсутствия кислорода в масле не горят. Водород обладает наибольшей теплопроводностью из всех газов, что определяет его высокую охлаждающую способность и в значительной мере объясняет хорошую дугогасящую способность масла.

С целью облегчения гашения дуги в МВ некоторых серий используется многократный разрыв электрической цепи. Это приводит к уменьшению мощности дуги и ускорению ее гашения.

Для улучшения работы МВ часто применяют специальные ДУ (гасительные камеры). Давление в гасительных камерах при отключении тока КЗ может достигать 3-8 МПа.

По принципу действия ДУ разделяются на две основные группы:

— с автодутьем, в которых высокое давление и большая скорость движения паров масла и газов в зоне дуги создаются за счет энергии дуги;

— с принудительным масляным дутьем, у которых масло в зону дуги нагнетается с помощью специальных гидравлических устройств.

Наиболее эффективными и простыми являются ДУ первой группы.

Различают следующие типы ДУ с автодутьем:

— простая гасительная камера, в которой газомасляное дутье происходит только после выхода подвижного контакта из отверстия в нижней части камеры;

— ДУ с принудительным газомасляным дутьем еще до выхода подвижного контакта из ДУ, в которых используется направленное продольное, поперечное или встречно-поперечное дутье.

Недостатки баковых МВ: взрыво- и пожароопасность, необходимость периодического контроля за состоянием и уровнем масла в баке и вводах; большой объем масла и связанные с этим большие габариты и масса МВ.

Перед заливкой в баки масла необходимо:

а) обтереть бензином первого сорта все внутренние изоляционные части, выключателя: бакелитовые втулки вводов, направляющую бакелитовую трубу, штангу) гетинаксовые экраны гасительных камер и т. п.;

б) очистить, протереть дно бака и масловыпускной вентиль, промыть маслом;

в) проверить исправность маслоуказателя;

г) просушить изоляцию бака и другие изоляционные части выключателя.

Просушку рекомендуется производить продуванием сухого горячего воздуха при помощи воздуходувки с подогревом. Во избежание коробления фанеры и прессшпана температуру продуваемого воздуха повышают постепенно и равномерно, чтобы в баках конечная температура 70±5° С установилась примерно через три часа. Просушка длится 10-12 часов.

Читайте так же:
Выключатели открытой проводки защищенный

Если на месте монтажа отсутствует воздуходувка с подогревом, просушку можно производить, помещая в каждый бак (подвешивая па нож) одну или несколько электроламп общей мощностью 1000 Вт, включенных через соответствующий реостат. Бак должен быть несколько опущен для обеспечения вентиляции. При помощи реостата регулируется накал лампы с таким расчетом, чтобы требуемая температура воздуха у стенок бака 70±5°С установилась примерно в течение трех часов.

Во время просушки баков при помощи ламп необходимо все время следить за температурой воздуха в баке и ни в коем случае не допускать повышения температуры свыше 100-120° С.

При указанном режиме воздуха просушку производят в течении 8-10 часов. После просушки воздухом производится окончательная сушка и пропитка изоляции баков трансформаторным маслом при температуре 60±5°С центрифугой с подогревом.

Для этого сразу после воздушной сушки необходимо:

а) залить баки сухим трансформаторным маслом (почти до маслоуказателя),

б) поднять баки выключателя почти доверху, оставив щель, достаточную для пропуска шлангов центрифуги;

в) включить центрифугу не менее чем на 12 часов при ее производительности 3000 л/час и не менее 18 часов при ее производительности 300 л/час.

По окончании процесса заливки необходимо дать маслу отстояться не менее 24 часов, после чего взять пробу масла из нижней части бака (каждый бак вмещает около 100 кг масла) через масловыпускной вентиль. При взятии проб некоторое количество масла спускается из вентиля с целью его промывки; посуда также несколько раз промывается маслом из бака, а затем заполняется для испытания. Перед испытанием масло в разряднике должно отстояться не менее 15 мин, приняв температуру помещения.

Если прочность масла окажется ниже 35 кв/2,5 мм, то цикл сушки и пропитки следует продлить до получения требуемой прочности масла.

Техника безопасности

Один раз в год производится осмотр и чистка всех частей выключателя, для чего баки освобождают от масла и подвергают очистке. Кроме плановых ежегодных ревизий, осмотр выключателя с обязательным опусканием баков производится каждый раз после отключения выключателем тяжелого короткого замыкания.

7. Диагностика, испытание и ревизия силового трансформатора ТМ – 30 (дать определение, структура условного обозначения, принцип работы, основные конструктивные части трансформатора, регулировка напряжения силового трансформатора, организационные и технические мероприятия, определение целостности трансформатора).

Силовой трансформатор — это электрический аппарат, который предназначен для преобразования электрической энергии одного значения напряжения в электрическую энергию другого значения напряжения. Трансформаторы бывают:

· в зависимости от количества фаз: однофазные и трехфазные;

· по количеству обмоток: двухобмоточные и трехобмоточные;

· в зависимости от места их установки: наружной и внутренней установки;

· по назначению: понижающие и повышающие;

Кроме того, силовые трансформаторы различают по группам соединения обмоток, по способу охлаждения. Также при установке трансформаторов учитывают климатические условия.

Буквенное обозначение трансформатора содержит следующие данные в указанном порядке:

1. число фаз — для трехфазных Т, О — однофазный;
2. вид охлаждения — естественная циркуляция воздуха и масла М, естественное воздушное при открытом исполнении С, естественное воздушное при защищенном исполнении СЗ;
3. принудительная циркуляция воздуха и естественная циркуляция масла Д;
4. число обмоток — трехобмоточный трансформатор Т; выполнение одной обмотки с устройством РПН обозначают буквой Н.
5. Трансформатор с расщепленной обмоткой НИ обозначают буквой Р (например ТРДН).
6. Исполнение трансформатора для собственных нужд электростанций обозначают буквой С (например, ТРДНС);
7. Г — грузоупорное исполнение.
8. Для обозначения автотрансформатора добавляют букву А впереди букв, указанных выше.
9. Исполнение трансформатора с естественным масляным охлаждением с защитой при помощи азотной подушки, без расширителя, обозначают дополнительной буквой З после вида охлаждения (например, ТМЗ).
Например, ТМ-320/10 — трехфазный трансформатор с естественным масляным охлаждением мощностью 320 кВ . А и высшим напряжением 10 кВ, ТДТНг-2000О/I 10 — трехфазный масляный трансформатор, дутьевое охлаждение, трехобмоточный, регулированием напряжения под нагрузкой, грузоупорный, мощностью 20000 кВ А и высшим напряжением 110 кВ.

Принцип работылюбого силового трансформатора основан на законе электромагнитной индукции. Если к обмотке данного устройства подключить источник переменного тока, то по виткам этой обмотки будет протекать переменный ток, который создаст в магнитопроводе трансформатора переменный магнитный поток. Замкнувшись в магнитопроводе, переменный магнитный поток будет индуктировать электродвижущую силу (ЭДС) в другой обмотке трансформатора. Это объясняется тем, что все обмотки трансформатора намотаны на один магнитопровод, то есть они связаны между собой магнитной связью. Значение индуктируемой ЭДС будет пропорционально количеству витков данной обмотки.

Далее рассмотрим основные конструктивные части силового трансформатора. Три обмотки высокого, среднего и низкого напряжения намотаны на сердечник (магнитопровод), выполненный из шихтованной стали.

Магнитопровод с обмотками помещен в специальный бак. На крышке бака расположены выводы обмоток. В данном случае трех обмоток: высокого (ВН), среднего (СН) и низкого напряжений (НН). Обмотка ВН и СН имеет нулевой вывод, предназначенный для заземления обмотки. Если нулевой вывод трансформатора заземляется, то эта обмотка называется глухозаземленной, в противном случае именуется с изолированной нейтралью. Также на крышке бака расположена выхлопная труба, газовая защита, устройство регулировки напряжения (РПН), расширитель и маслопровод, соединяющий расширитель непосредственно с самим баком. Выхлопная труба служит для защиты бака трансформатора от разрыва при резком увеличении давления газа, который выделяется при внутренних повреждениях аппарата.

Читайте так же:
Выключатель разъединитель вр32 37а

Магнитопровод представляет собой магнитную цепь силового трансформатора, по которой замыкается магнитный поток. Магнитопровод силового трансформатора изготавливается из холоднокатаной анизотропной электротехнической стали. Магнитопровод состоит из стержней, на которых расположены обмотки, и ярм, замыкающих магнитную цепь. Поверхность пластин изолирована либо жаростойкой пленкой или лаком, либо жаростойкой и лаковыми пленками в сочетании. Различают броневые, бронестержневые и стержневые магнитопроводы. Наибольшее распространение в силовых трансформаторах получили стержневые магнитопроводы. По способу сборки магнитопроводы подразделяются на стыковые и шихтованные. В стыковом магнитопроводе стержни и ярма собраны и закреплены раздельно и при сборке соединяются в стык. Такие магнитопроводы имеют ряд существенных недостатков, хотя и отличается простотой сборки.

Газовая защита выполнена на газовом реле, которое действует на сигнал либо на отключение трансформатора в случае повреждения внутри самого аппарата.

Расширитель предназначен для обеспечения постоянного заполнения бака маслом при изменении температуры окружающего воздуха или нагрузки трансформатора, а также для уменьшения площади поверхности соприкосновения масла с воздухом. Соединение расширителя с атмосферой осуществляется через воздухоосушитель (дыхательный патрон).

Термосифонный фильтр заполняется силикагелем и служит для защиты масла от увлажнения и окисления. То есть осуществляет непрерывную регенерацию трансформаторного масла. Для заливки и слива масла на баке аппарата расположены соответствующие задвижки, а также пробка для слива остатков масла. Для взятия пробы масла используется расположенный в нижней части бака кран.

Обмотки – это электрические цепи, по которым протекает электрический ток.

Различают следующие типы обмоток силовых трансформаторов: однослойные, двухслойные и многослойные. Тип обмотки зависит от габарита силового трансформатора.

Охлаждение

По способу охлаждения силовые трансформаторы делятся на три группы:

— с естественным воздушным охлаждением,

— с форсированным воздушным охлаждением,

— с естественным масляным охлаждением, с форсированным масляным охлаждением.

Силовые трансформаторы с воздушным охлаждением называют сухими, силовые трансформаторы с масляным охлаждением – масляными.

Этапы ремонта ТО масляных выключателей (операции — фото операций)

Капитальный ремонт масляного выключателя ВМГ-10/630
1. Произведен осмотр ВМГ-10
-подтеки масла с прокладок нижних крышек
-подтеки масла с масляного буфера
-низкий уровень масла МВ
-подтекание маслоуказателей ВМГ-10.

2. Измерение полного сопротивления токопроводов


3. Разбор масляного выключателя 6-10кв
— удален контактный стержень от полюса выключателя


— снят проходной изолятор ВМГ
— снята нижняя крышка масляного выключателя
— вынуты изоляционные цилиндры и дугогасительная камера

— разобрана дугогасительная камера, сняты гибкие связи, ламели

— разбор проходного изолятора
— разбор подвижного контакта

— разбор масляного буфера
— частичная замена крепежных элементов (наличие трещин и изломов шайб, наличие повреждений граней и углов на головках болтов и гаек)
— полная замена резиновых деталей

— частичная замена уплотнительных прокладок маслоуказателей
— частичная замена деталей (уплотняющих прокладок) из гетинакса и бакелита

4. Ремонтные работы на высоковольтном выключателе.
— промывка трансформаторным маслом дугогасительной камеры, зачистка мелкой шкуркой дутьевых каналов
— зачистка и промывка контактного стержня
— зачистка и промыка проходного изолятора
— зачистка и промывка бензином ламелей
— зачистка и промывка опорного изолятора
5. Сборка и регулировка
— сборка дугогасительной камеры
— смазка выступающей части картонной манжеты дугогасительной камеры
— сбока розеточного контакта
— установка бакелитового цилиндра в бак полюса
— крепеж нижней крышки
— осмотр заполненого маслом бака на предмет утечки масла
— сборка проходного изолятора и установка на полюс
— установка контактного стержня
— проверка отсутствия заеданий и чрезмерного заедания контактного стержня путем опускания с высоты 300мм под действием собственной массы
— регулировка контактного стержня
— установка гибкой связи на контактной колодке
— регулировка зазоров между верхними торцами болтов изолятора и нижней поверхностью колодки
— измерение полного сопротивления токопроводов (должно быть не более 75мкОм)
— установка полюсов в ячейку
— регулировка зазора между роликом рычага и болт- упором (в пределах 0,5- 1,5мм)
— измерение уровня масла
— доливка масла
— замер пробивного напряжения трансформаторного масла (64кВ)
— сборка масляного буфера
— проверка полного хода контактного стержня
— проверка одновременности замыкания контактов и собственное время
включения и отключения выключателя

energobar

Dolivo-Dobrovolskii

После создания в 70-х годах XIX века достаточно мощных и экономичных источников электрической энергии в виде электрических генераторов, изобретения трансформаторов с кольцевой и броневой магнитными системами, последовавшего вслед за этим в 1889 г. изобретения русским электротехником М.О. Доливо-Добровольским трехфазной системы переменных токов и трехфазного трансформатора началось создание и внедрение различных аппаратов управления и регулирования: выключателей, переключателей, контакторов, регуляторов напряжения и др.

Известный русский электротехник Владимир Николаевич Чиколев одним из первых в мире изобрел и использовал автоматический выключатель, патент на который так и не был оформлен.

Увеличение мощности и протяженности линий электропередач потребовало создания технических средств их включения и защиты. Первые отключающие аппараты представляли собой сосуды с ртутью, в которые опускались контактные стержни. Ртутные контакты применялись до 90-х гг. ХIХ в. Затем стали применяться контактные аппараты типа рубильников. Михаил Осипович Доливо-Добровольский подобную первую модель автоматического выключателя создал в 1893 году. Аппарат имел пружинные контакты и отключающую пружину. Во включенном состоянии контакты удерживались защелкой, которая открывалась под действием электромагнита при больших токах; такое исполнение автоматических выключателей и максимальных токовых защит сохранилось до настоящего времени.

Читайте так же:
Выключатели этюд дача темный бук

Несколько позднее, в 1910 г., он применил дугогасящее устройство из изоляционного материала с узкими щелями и металлической решеткой, а затем, в 1914 г., деионную решетку со специальными электромагнитами для втягивания электрической дуги в щель. Тем самым был открыт путь к созданию высоковольтных выключателей, способных быстро разрывать электрическую дугу при отключении в электрических сетях больших токов.

рехфазный выключатель для напряжений 25.000 в

В 1900 году на Парижской Всемирной Выставке «Электрическое Акционерное Общество б. Шуккертъ в Нюрнберге» выставило трехфазный генератор, на котором помещался новый максимальный автоматический выключатель. «Прибор этот комбинирован с ручным выключателем. Механическое их соединение таково, что вторичное включение автоматического выключателя после того, как он выпал из цепи, возможно только когда причина, произведшая короткое замыкание или другое повреждение действительно устранена. Прибор очень чувствителен. Он функционирует всегда при одном и том же токе. Посредством особого винта прибор может быть поставлен на любое количество ампер до 2000. Неверное обслуживание прибора, напр. включение его, когда короткое замыкание еще не устранено, немыслимо. Это предохраняет машину и провода от порчи» — писал журнал «Электричество» об этом устройстве.

В журнале "Электричество" в №17-18 за 1902 г. по этому поводу было написано: "Постоянно возрастающий спрос на трехфазные сети переменного тока высокого напряжения требует первоклассных приборов, между которыми выдающееся положение занимают выключатели и предохранители. Поэтому представляется благодарной задачей создать такой выключатель-предохранитель, который оказывал бы такое сопротивление напряжению, возникающему в момент размыкания тока высокого напряжения, чтобы это напряжение являлось безвредным, полное прерывание цепи не должно этим быть нисколько задержано". И такие выключатели (хотя и не совсем совершенные по меркам сегодняшнего дня) были созданы уже к концу первого десятилетия XX века, причем созданы на основе четкого представления о процессе горения электрической (иначе, вольтовой) дуги.

Первые образцы таких масляных выключателей были продемонстрированы в 1911 г. на выставке в Турине (Италия) фирмой Vedovelli, Priestley& C-ie из Парижа. Это были трехфазный выключатель на напряжение 25 кВ и однофазный на напряжение 45 кВ мощностью 10 кВА. В этих выключателях дугогасящая система была помещена в заполненный маслом заземленный бак, поэтому они были названы масляными баковыми выключателями. Масло в таких выключателях служило и для гашения дуги, и для электрической изоляции токоведущих частей .

Snap111

Вот что было написано все в том же журнале "Электричество" в №1 за 1912 г.: "Главное достоинство масляного выключателя заключается в том, что он прерывает цепь тока, не допуская образования большой вольтовой дуги, и требует, в сравнении с выключателями других конструкций, лишь незначительного места. Кроме того, существенно упрощается монтаж выключателя и присоединение его к сети. Особенно выгодно применение масляного выключателя, действующего с помощью реле в установках переменного тока, потому что здесь цепь тока прерывается после нескольких периодов почти как раз в момент прохода кривой тока через нулевую линию. В связи с установкой реле масляные выключатели легко могут исполнять задачи автоматических выключателей, надежное действие и безопасность которых в установках высокого напряжения всеми признаны".
Масляные выключатели были просты в изготовлении, сравнительно недороги, отличались высокой отключающей способностью, были пригодны не только для внутренней, но и для наружной установки. Поэтому неудивительно, что вплоть до 1930 г. они являлись единственным видом отключающего аппарата в сетях высокого напряжения. Несмотря на продолжавшееся в течение нескольких десятилетий существенное усовершенствование конструкции дугогасящих устройств, масляные выключатели имеют существенный недостаток: они взрыво — и пожароопасны.

1925 году завод "Электроаппарат" освоил производство масляных выключателей типов ВМ-5, ВМ-12 и ВМ-101. 1928 году там же был изготовлен первый советский масляный выключатель типа ВМ-125 для напряжения 120 000 В. 1933 году "Электроаппарат" изготовил масляные выключатели типа МКП-274 на 220 кВ с отключающей мощностью 2,5 млн. кВА.
Поэтому в дальнейшем эти выключатели (из-за больших объемов масла в баках выключателей их часто называют также многообъемными) уступили место малообъемным масляным выключателям, т.е. выключателям, в которых объем масла в баке ограничен, причем оно служит, только для гашения дуги. Например, в 1939 году завод "Уралэлектроаппарат" начал выпуск маломасляных выключателей типа ВМГ-32 на 10 кВ.

масляные

В 30-40-е годы еще не все подстанции нашей энергосистемы были оборудованы масляными выключателями, то есть не могло быть речи о дистанционном управлении подстанцией. На подстанциях устанавливались выключатели типов ВМ-16 и ВМ-35 с ручными приводами ПРБА. В 1954 году на смену взрывобезопасным однобаковым выключателям пришли выключатели масляные горшковые ВМГ-133, классифицированные как взрывобезопасные. У них каждая фаза была оснащена отдельным бачком (горшком), в котором и происходит замыкание контактов в небольшом объеме масла. В это же время шла массовая замена устаревших ручных пружинных приводов ПРБА приводами типа УГП-51. Они обеспечивали автоматическое повторное включение.

В дальнейшем были также разработаны высоковольтные выключатели с дугогасящей средой другого рода: воздухом, вакуумом (воздушные и вакуумные выключатели начали широко применяться в КРУ, начиная с 70-х годов прошлого века) и, наконец, с элегазом.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector