Ikea73.ru

IKEA Стиль
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Применение фотоэлементов

Применение фотоэлементов

Фотоэлементы используются в технике и в научных исследованиях. Например, они применяются в звуковом кино для воспроизведения звука, для сигнализации, в телевидении, автоматике и телемеханике. Фотоэлементы позволяют управлять на расстоянии процессами производства. При нарушениях хода процесса изменяется поток света, попадающего на фотоэлемент, и создается ток, выключающий весь процесс. С помощью фотоэлементов измеряются весьма слабые световые потоки (например, в биологии, астрофизике), регистрируются инфракрасные спектры, осуществляется фотографирование в темноте и т.д.

Вентильные фотоэлементы используются для изготовления “солнечных” батарей, преобразующих энергию Солнца в электрическую. Кремневые “солнечные” батареи применяются, например, для питания аппаратуры на искусственных спутниках Земли и автоматических межпланетных станциях.

Фотоэлементы могут быть использованы для измерения освещенности рабочих мест. Приборы, служащие для измерения освещенности, называются люксметрами.

Выполнение работы

1. Ознакомиться с имеющимися на лабораторном столе приборами.

2.Снять вольт-ампернуюхарактеристику вакуумного фотоэлемента (СЦВ-4):

2.1. Поместив фотоэлемент СЦВ-4 на оптическую скамью, собрать электрическую цепь по рис.9.4.

2.2. Подать напряжение сети на выпрямитель и источник света.

Изменяя напряжение U, подаваемое на фотоэлемент, от 0 до 120-150 В, снять зависимость (7-10 точек) силы фототока Iфот напряжения для двух расстояний r1 и r2 фотоэлемента от источника света. Результаты измерений занести в табл. 1.

П р и м е ч а н и е. Расстояния r1 и r2 необходимо подбирать такими, чтобы шкала миллиамперметра использовалась как можно полнее. Фототок можно измерять в относительных единицах (в делениях шкалы прибора).

Таблица 1

НомерU, ВIф, А
измеренияr1 =r2 =
. .

2.3. По измеренным данным построить графики Iф = f (U).

3. Снять люкс-амперную характеристику:

3.1. При постоянном напряжении (U = cоnst) снять зависимость силы фототока Iфот освещенности Е фотоэлемента. Так как освещенность обратно пропорциональна квадрату расстояния r , то изменять ее можно путем изменения r. Результаты измерений занести в табл. 2.

П р и м е ч а н и е. U = сonst должно быть подобрано так, чтобы r можно было менять в широком пределе.

3.2. По данным табл. 2 построить график Iф = f (E) = f (1 / r 2 ).

4. Снять характеристики фотосопротивления:

Таблица 2

НомерU, B =
измере-нияrIф, АE = 1/r 2
. . .

4.1. Выключить выпрямитель. На место фотоэлемента подключить в цепь фотосопротивление, установив его на оптическую скамью. По аналогии с пп. 2,3 снять однувольт-амперную и одну люкс-амперную кривые для фотосопротивления. Результаты занести в таблицы, аналогичные табл. 1 и 2.

4.2. По измеренным данным построить графики Iф= f (U), Iф =f (E).

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Понятие о квантовых свойствах света. Энергия кванта света.

2. Явление внешнего фотоэффекта и его закономерности.

3. Внутренний фотоэффект и его объяснение на основе зонной теории строения вещества.

4. Уравнение Эйнштейна для внешнего фотоэффекта, его физический смысл.

5. “Красная граница” фотоэффекта.

6. Объяснение закономерностей фотоэффекта на основе квантовой природы света

7. Вольт-амперные и люкс-амперные характеристики вакуумного и газонаполненного фотоэлементов.

8. Зависимость тока насыщения фотоэлементов от освещенности.

9. Задерживающая разность потенциалов и ее связь с кинетической энергией электрона, вылетевшего из катода в результате фотоэффекта.

Фотоэлементы с внешним фотоэффектом

Вакуумный фотоэлемент пред­ста­вляет собой откачанный стеклянный баллон, часть внутренней поверхности которого покрыта тонким слоем светочувствительного металла, игра­ю­ще­го роль фотокатода. Анод А на­хо­дит­ся в центре баллона (рис. 8.1). При освещении фотоэлемента из катода вы­летают электроны и под дей­стви­ем электрического поля попадают на анод. По цепи идет ток.

Читайте так же:
Как подключить с выключателем светодиодную ленту схемы

Газонаполненный фотоэлемент содержит какой-либо инертный газ под небольшим давлением. Первичные фотоэлектроны ионизируют атомы газа, что приводит к увеличению тока, проходящего через элемент.

Фотоэлементы с внутренним фотоэффектом

(полупроводниковые фотоэлементы)

Фотосопротивление. Действие его основано на явлении фотопроводимости. На рис.8.2 показано включение фото­со­про­тив­ления в электрическую цепь. Без освещения фото­со­противления ток в цепи практически от­сут­ствует, при освещении ток возрастает в тысячи раз.

Фотосопротивления обладают чувстви­тельностью в сотни и тысячи раз боль­шей, чем фотоэлементы с вне­ш­ним фото­эф­фектом. Кроме того, они име­ют широ­кий диапазон спектральной чув­стви­тель­но­сти: от инфракрасных до рентгеновских и g — лучей.

Недостатками их являются зна­чи­тель­ная инерционность и зави­си­мость свойств от температуры.

Вентильные фотоэлементы (фо­то­э­лементы с запирающим слоем). В вентильных фотоэлементах ис­поль­зу­ет­ся фотогальванический эффект (разновидность внутреннего фотоэффекта). В отличие от других фотоэлементов, вентильные фотоэлементы не требуют при работе источника тока, так как сами являются таким источником.

Вольт — амперные и люкс — амперные характеристики фотоэлементов

Вольт — амперной характеристикой фо­­то­элемента называется кривая, выража­ю­щая зависимость фототока от напряжения. На рис. 8.3 показана вольт — амперная харак­те­рис­тика вакуумного фотоэлемента. Она отличается двумя особенностями:

а) при увеличении напряжения U между анодом и катодомфототок IФ достигает насыщения (с увеличением освещенности ток насыщения возрастает);

б) существует такое значение за­дер­­жи­вающей разности потенциалов Uз , при котором фототок прекращается. Элек­тро­ны перестают достигать анода, когда ра­бо­та задерживающего электрического поля ста­новится равной их начальной кинетической энергии:

где е, m и V — это заряд, масса и скорость электрона соответственно.

Вольт — амперные характеристики фотосопротивлений имеют линейный характер.

Люкс — амперной (или световой) характеристикой фотоэлемента называется зависимость фототока от освещенности катода при постоянном напряжении. У вакуумных фотоэлементов световая характеристика линейна, так как число выбитых электронов в единицу времениnпропорционально освещенности (Iн = е n

Световая характеристика фотосопротивлений имеет нелинейный характер.

Применение фотоэлементов

Фотоэлементы используются в технике и в научных исследованиях. Например, они применяются в звуковом кино для воспроизведения звука, для сигнализации, в телевидении, автоматике и телемеханике. Фотоэлементы позволяют управлять на расстоянии процессами производства. При нарушениях хода процесса изменяется поток света, попадающего на фотоэлемент, и создается ток, выключающий весь процесс. С помощью фотоэлементов измеряются весьма слабые световые потоки (например, в биологии, астрофизике), регистрируются инфракрасные спектры, осуществляется фотографирование в темноте и т.д.

Вентильные фотоэлементы используются для изготовления “солнечных” батарей, преобразующих энергию Солнца в электрическую энергию. Кремниевые “солнечные” батареи применяются, например, для питания аппаратуры на искусственных спутниках Земли и автоматических межпланетных станциях.

Фотоэлементы могут быть использованы для измерения освещенности рабочих мест. Приборы, служащие для измерения освещенности, называются люксметрами.

Выполнение работы

1. Ознакомиться с имеющимися на ла­бора­тор­ном столе приборами.

2.Снять вольт – ам­пер­нуюхарактеристику ва­куумного фотоэлемента (СЦВ-4):

2.1. Поместив фото­эле­мент СЦВ-4 на оп­ти­чес­кую скамью, собрать электрическую цепь по рис. 8.4.

2.2. Подать напря­же­ние сети на вы­пря­ми­тель и источник света. Из­ме­няя напряжение U, по­даваемое на фото­э­ле­мент, от 0 до 120-150 В, снять зависимость (7-10 точек) силы фототока Iфот напряжения для двух расстояний r1 и r2 фотоэлемента от источника света. Результаты измерений занести в табл. 8.1.

НомерU, ВIф , А
измеренияr1 =r2 =
. .

П р и м е ч а н и е. Расстояния r1 иr2 необ­хо­ди­мо подбирать такими, чтобы шкала миллиампер­метра использовалась как можно полнее. Фототок мож­но измерять в отно­си­тель­ных единицах (в де­ле­ни­ях шкалы прибора).

Читайте так же:
Как подключить двухклавишный выключатель с подсветкой этика

2.3. По измеренным данным построить графики Iф = f (U).

3. Снять люкс — амперную характеристику.

3.1. При постоянном напряжении (U = cоnst) снять зависимость силы фототока Iфот освещенности Е фотоэлемента. Так как освещенность обратно пропорциональна квадрату расстояния r , то изменять ее можно путем изменения r. Результаты измерений занести в табл. 8.2.

НомерU, B =
измеренияrIф, АE = 1/r 2
. . .

П р и м е ч а н и е. U = сonst должно быть подобрано так, чтобы r можно было менять в широком пределе.

3.2. По данным табл. 8.2 построить график

Iф = f (E) = f (1 / r 2 ).

4. Снять характеристики фотосопротивления.

4.1. Выключить выпрямитель. На место фотоэлемента подключить в цепь фотосопротивление, установив его на оптическую скамью. По аналогии с п.п. 2,3 снять однувольт — амперную и одну люкс — амперную кривые для фотосопротивления. Результаты занести в таблицы, аналогичные табл. 8.1 и 8.2.

4.2. По измеренным данным построить графики Iф= f (U), Iф =f (E).

1. Понятие о квантовых свойствах света. Энергия кванта света.

2. Явление внешнего фотоэффекта и его закономерности.

3. Внутренний фотоэффект и его объяснение на основе зонной теории строения вещества.

4. Уравнение Эйнштейна для внешнего фотоэффекта, его физический смысл.

5. “Красная граница” фотоэффекта.

6. Объяснение закономерностей фотоэффекта на основе квантовой природы света

7. Вольт — амперные и люкс — амперные характеристики вакуумного и газонаполненного фотоэлементов.

8. Зависимость тока насыщения фотоэлементов от освещенности.

9. Задерживающая разность потенциалов и ее связь с кинетической энергией электрона, вылетевшего из катода в результате фотоэффекта.

10. Зависимость проводимости фотосопротивления от освещенности.

11. Вольт — амперная и люкс — амперная характеристики фото­сопро­тив­ле­ния.

Фотоэлектрические датчики

В этой статье наш сайт “Все-электричество” рассказывает про фотоэлектрический датчик – это специальный датчик, который способен реагировать на изменение освещенности.

Фотоэлектрический датчик

В специальных фотоэлектрических датчиках могут использоваться 3 вида фотоэффекта:

  1. Внешний фотоэффект. Он заключается в том, что под влиянием световой энергии будет происходить вылет электронов из катода электронной лампы. Величина тока эмиссии будет зависеть от освещенности катода.
  2. Внутренний фотоэффект. Он будет заключаться в том, что активное сопротивление полупроводника находится в зависимости от его освещенности.
  3. Вентильный фотоэффект. Заключается в том, что между слоями освещаемого проводника и неосвещаемого полупроводника будет возникать электродвижущая сила, величина которого будет зависеть от освещенности.

Важно знать! Фотоэлементы, которые имеют внешний фотоэффект представляют собою вакуумную или газонаполненную лампу с катодом из фоточувствительно слоя.

Схема включения фотоэлемента с внешним фотоэффектом в электрическую сеть

Анод и катод специального фотоэлемента заключается в стеклянный баллон, из которого будет откачан воздух. Когда световой поток будет попадать на катод часть лучистой энергии сообщается электронам и электроны будут вылетать из катода. Это явление может иметь название фотоэлектронная эмиссия. Чтобы ее использовать между фотокатодом и анодом будет создаваться электрическое поле, которое будет направлять электроны к положительно заряженному аноду. Когда действие света будет прекращено, тогда ток постепенно исчезнет. К фотоэлементам промышленного типа будут принадлежать:

  • ЦГ (Кислородно-цезиевый газонаполненный).
  • СЦВ (сурьмяно-цезиевый вакуумный).

Работа каждого элемента будет определяться рядом характеристик. В этой статье мы постарались рассмотреть только некоторые из них.

Световые характеристики фотоэлемента

Световая характеристика фотоэлемента – это зависимость фототока от светового потока, который в дальнейшем будет попадать на фотокатод. Чувствительность фотоэлемента – это отношение величины фототока в микроамперах к величине светового потока в люменах. Фотоэлемент будет реагировать на интенсивность светового потока и его частоту. Поэтому чувствительность будет распределяться на интегральную и спектральную.

Характеристики фотоэлементов с внешним фотоэффектом

  • Интегральная чувствительность – это величина тока фотоэлектронной эмиссии, которая создает в фотоэлементе всем световым потоком.
  • Спектральная чувствительность – это способность реагировать на световые колебания одной частоты.

Если рассмотреть вакуумные фотоэлементы анодный ток будет обусловлен только электронами, которые будут вылетать из фотокатода. В газонаправленных фотоэлементах ток будет создаваться не только электронами, но и ионами, которые будут получены в результате ионизации газа. Этим будет полностью объясняться нелинейность их световых характеристик. Чувствительность газонаправленного фотоэлемента будет больше, чем чувствительно вакуумного фотоэлемента. Интегральная чувствительность фотоэлемента типа СЦВ-4 будет составлять 100 мкА/лм.

Фотосопротивление

Для использования фотоэлементов в схемах автоматики потребуется применение усилителей с большим коэффициентом усиления. Явление внутреннего фотоэффекта будет заключаться в том, что в результате поглощения света в полупроводнике могут появляться дополнительные свободные электроны, благодаря чему проводимость вещества значительно увеличится. У нас вы также можете прочесть, какие устройства могут измерить давление.

Фотосопротивление будет состоять из светочувствительного слоя полупроводника, который имеет толщину около 1 мкм. На его поверхности будут располагаться токосъемные электроды. Сам чувствительный элемент будет монтироваться в пластмассовом корпусе так, чтобы электроды обеспечили включение фотосопротивления в схему через специальную панель.

Промышленность на сегодняшний день выпускает разнообразные фотосопротивления, которые будут иметь следующие типовые обозначения: за буквами ФС будут стоять буквы и цифры, которые имеют прямое отношение к составу материала и конструкции. Например, фотосопротивление, кроме букв ФС в своем названии может иметь обозначение А – из сернистого свинца, Б – из сернистого висмута и К – из сернистого кадмия.

Работа фотосопротивления имеет достаточно простой принцип. При освещении электрическое сопротивление падает и ток в электрической цепи будет возрастать. Мерой чувствительности фотосопротивления считается разность токов в темноте и на свету, отнесенная к величине светового потока, который будет попадать на фотосопротивление.

Чувствительность фотосопротивлений будет в несколько раз больше чувствительности фотоэлементов с внешним фотоэффектом.

Основными характеристиками фотосопротивления считается:

  1. Спектральная чувствительность. Характеризует чувствительность фотосопротивления при воздействии на него излучения определенной длины волны.
  2. Световая чувствительность. Характеризует чувствительность фотосовентильных фотоэлементов будет велика, так как система электродов образует значительную емкость.

Теперь вы точно знаете, как работают фотоэлектрические датчики. Надеемся, что эта информация была полезной и интересной.

Введение. Цель работы. Снятие вольт-амперной характеристики фотоэлемента и исследование зависимости возникающего в фотоэлементе фототока от потока излучения

Цель работы. Снятие вольт-амперной характеристики фотоэлемента и исследование зависимости возникающего в фотоэлементе фототока от потока излучения, падающего на чувствительную поверхность фотоэлемента.

Приборы и принадлежности.Фотоэлемент, микроамперметр, лампа накаливания, оптическая скамья с держателями для фотоэлемента и лампы, выпрямитель, потенциометр, вольтметр, соединительные провода, светофильтры.

Введение

Воздействие света на вещество состоит в сообщении веществу энергии, приносимой световой волной. Одним из проявлений воздействия света на вещество является внешний фотоэффект— испускание электронов веществом под действием света.

Явление фотоэффекта было открыто Герцем в 1887 г., а затем подробно изучено А. Г. Столетовым (1888 г.). Схема опыта А. Г. Столетова представлена на рис. 1. Поток света падает на конденсатор, состоящий из двух пластин. Одна представляет собой металлическую сетку (А), через которую свет может свободно попадать на вторую пластину, являющуюся катодом (К). Б — батарея, с помощью которой создается поле между пластинами конденсатора. А. Г. Столетов установил, что при освещении светом от электрической дуги пластина К теряет свой заряд; при этом гальванометр Г показывает наличие тока. Позднее было установлено, что пластина К. испускает электроны. Используемая в опытах Столетова схема представляет собой простейший фотоэлемент с внешним фотоэффектом. Пластина К носит название фотокатода, а пластина А — фотоанода. Испускаемые фотокатодом электроны называют фотоэлектронами, а возникающий электрический ток — фототоком.

На рис. 2 показана вольт-амперная характеристика фотоэлемента, т. е. зависимость силы фототока I от разности потенциалов φ1 – φ2 = UA между фотокатодом и фотоанодом при Ф = const, где Ф — поток излучения.

Из рис. 2 следует, что с увеличением разности потенциалов UA, называемой анодным напряжением, фототок растет, а затем достигает насыщения. Насыщение наступает при таком значении UA, когда все электроны, испускаемые фотокатодом за единицу времени, достигают анода. Сила фототока насыщения

где е — заряд электрона, n — число электронов, попадающих
на анод за единицу времени.

Законы внешнего фотоэффекта. Приведем три основных
закона фотоэффекта.

I. При постоянном спектральном составе потока излучения
фототок насыщения пропорционален потоку излучения:

γ — называют интегральной чувствительностью фотокатода.

Зависимость (2) называется люкс-амперной характеристикой фотоэлемента, график ее представлен на рис. 3. Закон был
впервые сформулирован А. Г. Столетовым. Следует отметить,
что закон Столетова строго выполняется лишь для вакуумных
фотоэлементов.

Энергия фотона , где

h = 6,62-10 -34 Дж · с — постоянная Планка,

II. Максимальная кинетическая энергия фотоэлектронов
линейно возрастает с увеличением частоты падающего моно-
хроматического света.

Рассмотрим подробнее вольт-амперную характеристику
фотоэлемента. Из рис. 2 следует, что при UA = 0 сила фототока . Это означает, что электроны, вырванные светом из катода, имеют некоторую скорость, а, следовательно, и кинетическую энергию , и могут достигнуть анода в отсутствие внешнего электрического поля. Чтобы прекратить фототок, т. е. сделать его равным нулю, необходимо приложить задерживающее напряжение U3,, при котором даже самые быстрые фотоэлектроны не достигнут анода, т. к. будут задержаны электрическим полем, т. е.

Здесь m — масса электрона,
е — заряд электрона,
U3— задерживающее напряжение.

Меняя частоту падающего монохроматического света, можно найти зависимость f(ν)

Экспериментальные исследования показали, что эта зависимость является линейной:

где а — константа, b — зависит от материала катода.

График зависимости (4) показан на рис. 4 и свидетельствует о том, что с увеличением частоты падающего монохроматического света максимальная кинетическая энергия фото-
электронов возрастает. Линейный характер зависимости был
объяснен Эйнштейном на основе квантовых представлений о
природе света.

При падении фотонов на поверхность металла происходит взаимодействие фотонов и атомов. Согласно однофотонной теории фотоэффекта, атом получает энергию только одного фотона. Эта энергия расходуется на работу выхода электрона из металла и сообщения ему кинетической энергии.

В соответствии с законом сохранения энергии максимальная кинетическая энергия фотоэлектрона равна

Здесь А — есть работа выхода электрона из металла, равная той наименьшей энергии, которую необходимо сообщить
электрону (атому) для того, чтобы удалить его из твердого или жидкого вещества в вакуум в состояние с кинетической энергией равной нулю.

Выражение (5) носит название уравнения Эйнштейна для
внешнего фотоэффекта.

Сопоставление уравнений (4) и (5) позволяет сделать вы-
вод, что а = h, b = А, что объясняет результаты эксперимента.

III. Для каждого вещества существует красная граница
фотоэффекта, т. е. минимальная частота света v, при которой
еще возможен внешний фотоэффект. Величина v зависит от
химической природы вещества и состояния его поверхности.

При облучении вещества светом, длина волны которого λ > λ (или частота ν ν), фотоэффект не наблюдается (см. рис. 4). Из рис. 4 следует, что (Ек)mах = 0 при ν = ν, следовательно согласно (5) имеем:

Следует отметить, что при обычных интенсивностях света
при взаимодействии света с веществом в элементарном акте
поглощается один фотон. При больших интенсивностях, на-
пример в световых пучках, генерируемых лазерами, в элементарном акте взаимодействия могут поглощаться несколько
фотонов. Такое поглощение называется многофотонным
(см. 3).

Формула Эйнштейна в этом случае записывается следующим образом:

N · h · ν = (m·v 2 max)/2 + А.

Соответственно красная граница смещается в сторону более длинных волн (λ увеличивается в N раз), а формула (2), отражающая зависимость тока насыщения от потока излучения для многофотонных процессов приобретает вид:

Фотоэлементы. Устройство фотоэлементов.

Фотоэлементами называются устройства, в которых световая энергия преобразуется в электрическую. На внешнем фотоэффекте основано устройство фотоэлементов, широко при-
меняемых в разных областях техники. Фотоэлементы бывают
вакуумные и газонаполненные.

Вакуумный фотоэлемент (рис. 5) представляет собой стеклянный или кварцевый баллон, на внутреннюю стенку которого нанесен слой К светочувствительного щелочного металла. Этот слой К имеет контакт с проводником, выведенным из баллона. В середине баллона расположено кольцо А, имеющее контакт с другим проводником, выведенным из баллона. Кольцо Асоединяется с положительным полюсом батареи (фотоанод), слой К—с отрицательным полюсом батареи (фотокатод). Электрическое поле направляет к фотоаноду фотоэлектроны, испускаемые фотокатодом при его освещении, создавая ток в цепи.

У вакуумных фотоэлементов, начиная с некоторого значения анодного напряжения, прекращается дальнейший рост тока, наступает состояние насыщения.

Газонаполненный фотоэлемент отличается от вакуумного тем, что он наполнен каким-либо инертным газом (Не, Ne, Ar). Эти фотоэлементы обладают большей чувствительностью, чем вакуумные, и ток насыщения в них отсутствует.

Описание установки и содержание работы.

В работе исследуются следующие основные характеристики фотоэлемента с внешним фотоэффектом.

1. Зависимость силы фототока от анодного напряжения
при постоянной освещенности (вольт-амперная характеристика фотоэлемента):

2. Зависимость фототока от освещенности при постоянном анодном напряжении (люкс-амперная характеристика)

1/r 2 при UA = const.

Величина фототока прямо пропорциональна освещенности;
в свою очередь, освещенность обратно пропорциональна квадрату расстояния r от источника света при нормальном падении светового пучка на фотокатод. Поэтому

Исследование производится при помощи установки, состоя-
щей из оптической скамьи, на которой расположен исследуемый фотоэлемент и электрическая лампочка. На рис. 6 показана принципиальная схема установки. Здесь Ф — исследуемый вакуумный фотоэлемент; ВУП-2 — выпрямитель универсальный полупроводниковый для питания анодной цепи; V
вольтметр для измерения величины анодного напряжения:
μА — микроамперметр; Л — осветительная лампа.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector